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ABSTRACT .
NX
Cloud-cover pictures taken with the Automatic Picture Transmission system
designed for the Nimbus satellite and experimentally tested on a TIROS satellite,
do not pass through a central processing station. These pictures are received
directly by the ultimate user from the satellite. Any geographic referencing of the
data in the pictures (latitude-longitude grid) must be accomplished by the receiver
(user) of the data or must be added to the video picture in the satellite. This report
contains the results of a study of the various methods by which the latitude-longitude
grid can be added to the video picture on board the satellite. Both analog and digital
approaches to onboard gridding were considered. Several digital approaches were
found feasible, These approaches call for computer computation of the picture grids
on the ground, transmission of the grid line data to the satellite for storage, and
logic circuitry to withdraw the data from memory and electronically mix grid line
marks into the video during the picture scan. The approaches judged feasible are:
(1) straight-line method where the curved grid lines are approximated with straight
line segments whose slope, length and initial coordinates are transmitted to the
satellite, (2) coordinate method where the individual image plane coordinates of each
mark are transmitted, (3) slope-coordinate method where starting coordinates and
a slope range are specified to reduce the information necessary to obtain the image
plane coordinates of each mark. On the basis of preliminary designs, the flight
system weight and power requirement is approximately 7-8 pounds and less than

2 watts respectively.

ii
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SECTION 1

INTRODUCTION

1.1 GENERAL

Geographic referencing of pictorial data in pictures taken with ""conventional
TIROS and Nimbus AVCS cameras is accomplished by superposition of latitude-
longitude grid before the pictures or nephanalyses are transmitted from command
and data acquisition stations. Since APT pictures do not pass through any central
processing station, any grid to be applied to the pictures must be included in the
picture video signal, if "'manual" modes of gridding are to be avoided at the various
APT receiving stations.

Manual gridding and antenna tracking procedures currently in use for APT
were developed by ARACON. In use, they have proved to be effective and fairly
accurate. However, significant errors (as large as 100 miles) can occur due to
(1) the error in the map projection (necessary to reduce the number of maps to a
manageable figure), (2) difficulties in obtaining an accurate picture time, (3) the
inability of station operators to cope with attitude variations as effectively as a
CDA computer-operation.

Additionally, a significant amount of operator time is required to plot the
satellite track, derive the antenna program, determine satellite subpoint at picture
time, determine picture azimuth, find and superpose the proper overlay on the
picture, adjust for apparent yaw error, and finally trace the grid. While we have
not conducted time and motion studies, it would appear that the operator has time
for little besides a cup of coffee between passes so that for a 3-pass day he may be
tied up for some 250 minutes or over four hours.

If the operator can be released for other weather station duties during this
period, a significant manpower economy is possible. Multiplied by the potential num-
ber of APT stations in the world, which we will conservatively take at 200, a two
hour saving becomes 400 hours per day. At U.S. direct labor rates, this approaches
$500, 000 annually. More importantly, it may make the difference establishing
the economic feasibility of APT in marginal situations. A modicum of further auto-
mation in antenna control could then reduce the requirement for operator intercession

to an attractive minimum.




1f DRIR is added to the APT capability, an on-board gridding system
would more than double the labor saving mentioned above. Manual IR gridding has
proved to be extremely laborious, largely because of the nature of the projection
arising from the circular scan of the HRIR instrument. A fixed IR grid can be used
with the resulting projection only if the recipients of the data are willing to accept a
completely arbitrary set of values for the geographic grid lines. This would con-
siderably complicate the task of cross-referencing the IR data with video data and
earth geography.

There are other reasons to supplant manual methods of gridding at the re-
ceiving station. The APT stations are not able to receive telemetry data from the
satellites. As a result they are unable to correct for the effects of attitude error in
the geographic referencing of the picture data. An on-board gridding system can
make corrections in the picture grid for roll and pitch errors determined from
attitude sensor outputs at the time of picture taking. Further, the ground operator
seldom has a good fix on picture time.

Although at present a station operator must carefully set antenna drive con-
trols as a function of time, the satellite tracking proc edure can be considerably
simplified. Indeed, the capability for line drawing and annotation of an on-board
gridding system in itself offers a method of simplifying the tracking procedures.
Tracking data for tomorrow's orbits can be included in today's APT pictures (see
Appendix B). The combination of an on-board gridding system and simplified track-
ing procedures will make the automatic picture transmission system a truly
"automatic' system. This would be especially beneficial to military users or
commercial users of the APT data who have little or no knowledge of satellite
tracking and data reduction procedures.

If the APT system is to take its proper place in the weather station as an
operational tool providing weather data with as little attention required of the man
in the station as demanded by the weather facsimile devices, the manual procedures
now mandatory must be eliminated. An onboard gridding system will eliminate the
greater percentage of time consuming and error inherent procedures now demanded
to make use of APT data.

A variety of methods can be potentially applied to the task of on-board
gridding; this report is a design study of advantages and disadvantages of each
method.




1.2 SYSTEM REQUIREMENTS

The on-board gridding system, if practical, will be flown on a future Nimbus
satellite. However, such a system is potentially useful on board any cloud cover
observing satellite. In studying the possible approaches to on-board gridding, all
constraints common to any of the meteorological satellites now in use or in planning
were considered. The range of height for the meteorological satellites was fixed
between 400 and 800 nautical miles. Although it is presumed that the satellite orbits
will be circular, consideration was given to the effects of elliptical orbits. The
study assumed the use of the present APT camera system, the 107° diagonal
angular aperture forming the primary constraint for this system. The following

APT system parameters were assumed.

1. Pictures per orbit 10 to 15, dependent on height
2. Field of view 107° diagonal

3. Number of lines per frame 800

4. Number of elements per line 784

5. Frame rate 208 seconds

6. Frame scanning time 200 seconds

7. Line rate v 250 milliseconds/line

8. Exposure time 40 milliseconds

The Jatitude-longitude lines may be represented by discontinuous grid marks.
Maximum spacing between grid marks called for in the original specification is one
percent of the side dimension in either X or Y displacement on the picture plane.
The shape of the grid marks was specified as two black followed by three white
picture elements, one line thick. Some form of annotation is to be included in the
picture to allow the data user to readily identify the grid lines. The grid spacing
as initially specified is as follows:

Latitude spacing on picture

a. 2° from 0-70° latitude north and south.

b. 4° from >70° latitude north and south.

Longitude spacing on picture

a. 2° from 0-40° latitude north and south.
b. 4° from 40-70° latitude north and south.

c. 8° from 70-82° latitude north and south.
40° from >82° latitude north and south.
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The maximum error of grid marks is to be no greater than one percent.

The error is defined:

e = pt_-.F_)E_ (100)
s
where
e - percent error
Pt - true grid point
Pa - actual grid mark
s - side dimension of picture

It is assumed that the time of picture taking is known in advance. Itis also
assumed that the approximate satellite attitude for the time of picture taking will be
known. In particular for Nimbus, which is actively controlled in all three of its
axes, the attitude should be constant. However, the remaining error may be
sufficient to cause error in APT picture location. Consequently, an on-board
gridding system should be capable of including the possibility of grid corrections
from onboard attitude sensors.

CDC 924 computers are available in the ground stations for computation of
the picture grids. However, an important constraint is that the computational time
be short to avoid interfering with the station operations normally assigned to these
computers.

Since a possibility of using the existing command channel of the Nimbus
satellite exists, the capabilities of the command channel form a part of the specifica-~

tions. Command receiver specifications are:

Frequency 149 Mc
Bandwidth 40 kc, 1i.f.
S/N ratio 17 dB at 20 kc bandwidth of reciver output,

worst case
Finally, the cost on an on-board gridding system is a constraint in that it
must be compatible with the advantages gained from manual procedures at the re-

ceiving station.

1.3 APPROACHES CONSIDERED

A number of analog schemes were studied. These included systems which

optically add the grid to the video picture and systems in which the grid, stored
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on board the satellite, is scanned and mixed with the signal during transmission.
Some of the forms of grid storage considered were:

1. Storage of the picture grid on continuously advancing film strips.

2. Storage of the picture grid on a cylinder.

3. Storage of the picture grid on a sphere.

The analog approaches are contained in Section 4 of this report.

Digital approaches to on-board gridding are:

1. Ellipse Method - In the ellipse method the coefficients of the ellipses can
be transmitted and stored in the satellite. At the time of transmission of the picture,
the coordinates of the ellipse section can be computed from the stored coefficient
and mixed with the picture.

2. Straight Line Method - In the ground station computer the latitude-
longitude lines can be fitted with straight line segments restricted to the specified
maximum error. The picture plane can be represented by 800 Y coordinates
representing the scan lines and 800 X coordinates representing the elements of the
scan lines. The initial coordinates and the slope of the line segments are then ,
transmitted and stored. The information for a particular section is then extracted
from the main memory and compared with the scanning of the picture to mix in grid
marks at the proper locations as the picture is scanned for transmission. The
AX of the slope is added to the previous mark coordinate to locate the next mark.
The initial Y coordinate of the following line segment can be used to terminate the
previous line segment. This method will allow many coordinates to be plotted with
only moderate memory since the initial coordinates plus the slope will only take as
much memory as two sets of coordinates but may plot out many points.

3. Coordinate Method - All the coordinates of the points of the grid lines
can be transmitted and stored. On picture transmission the points are mixed with
the picture. Storing all the points would take a rather large memory; howevex;, by
reducing the number of possible coordinates, within the restriction of the given
maximum error, the memory may be reduced to a feasible size while not degrading
the grid lines excessively.

A block diagram showing the basic elements common to all the digital

approaches appears in Figure 1-1.
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1.4 SCOPE OF EFFORT

At the beginning of the study, all of the approaches listed above were briefly
analyzed to permit dropping those approaches which were obviously impractical.
Rough designs were done for those approaches which showed any promise. Two of
the digital approaches, the straight line method and the coordinate method, appeared
to be practical. Fairly detailed system designs were completed for each of these
methods to allow the determination of the following parameters.

a. Storage requirements.

b. Error tolerance and system reliability.

c. Instantaneous and average power requirements.
d. Weight and volume.

e. Interface requirements.

f. Communications channel requirements.

g. CDA station computer requirements.

1.5 REPORT TERMINOLOGY

Some of the nomenclature used in this report is often ambiguous; e. g., line
is commonly used for a television sweep and is easily confused with grid line.
Hence, the following terms are defined as they will be used in this report.

1. Coordinate - refers to the location of an element on the 800 x 800 element
picture.

2. Mesh - the set of points of a particular defined coordinate subsystem.
More specifically, a set of points lying on an array of perpendicular equally spaced
lines. The horizontal lines of the mesh are parallel to the APT horizontal sweeps.
The mesh line spacing is specified by n, which is the number of picture elements
between mesh lines.

3. Picture element - conventional definition in common use for television.
For the APT system there are 800 x 800 picture elements in a single picture.

4. Sweep - as in conventional television terminology.

5. Grid - the set of meridian and parallels to be superimposed on a
particular APT picture.

6. Mark (grid mark) - a pattern consisting of five coded adjacent elements
on a single sweep, specified to be three black followed by two white picture elements,

one line thick.
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7. Line - a set of marks approximating a meridian, parallel, arrow, or
alphanumeric character in the APT pictures.

8. K - the number of picture elements between successive marks of a
mode 0 line or the number of sweeps separating marks of a mode 1 line.

9. Mode 0 line - a grid line which makes an intersection angle 6 with a
sweep such that 0° <8< 45°,

10. Mode 1 li;e - a grid line which makes an intersection angle 6 with a
sweep such that 45° <6< 90°.

11. Mesh inter_val_- a distance along a mesh line of n picture elements. The
mesh intervals are a set of allowable mark locations.

12. Zone - an equalized group of contiguous horizontal sweeps in a picture
which divides the picture for purposes of frequent resynchronization in case of

errors.

1.6 SUMMARY AND RECOMMENDATIONS

None of the analog approaches to on-board gridding are considered practical
relative to the digital approaches for the following reasons.

1. A flexible analog system contains most of the elements of any of the
digital systems - data channel (demodulator, synchronizer, error detection cir-
cuitry), memory (storage of data for correction of orbit and picture parameter
errors), and logic circuitry to compensate for attitude, orbit and APT parameter
errors. The additional equipment needed for the analog systems - lens or scanner,
grid storage medium, servo controls - places the analog system at a severe weight
disadvantage when compared to the digital approaches.

2. The reliability of the electromechanical analog approaches is inherently
lower.

3. The spacecraft on which an on-board gridding system is useful (Nimbus-
TIROS) are sensitive to internal motions. The motion compensation required com-
plicates design and produces further weight penalties.

4. Optical mixing approaches require modification of the mechanical (and
preferably the optical) portions of the APT system. The extremely wide angular
coverage of the APT lens (1070) complicates the optical design for introducing the
picture grid into the camera focal plane.

5. Annotation (for grid line referencing) is difficult to accomplish unless an
annotated grid of the entire earth is stored. Digital approaches which draw grid

lines can produce alphanumeric characters with relative ease.
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Consideration was given to the use of the Nimbus PCM recorder (stored-A)
for the storage of the grid data. This would permit a substantial savings in weight.
However, this approach was dropped due to the nature of the interface and the loss
of the ability to produce a "standard package'' useful on any meteorological satellite,

Several approaches to on-board gridding appear promising. These are the
straight line method, the coordinate method and a modification of the coordinate
method which utilizes slope prediction and storage to reduce the amount of data
necessary to specify the locations of the individual grid marks.

All of the approaches judged promising can be accomplished with a flight
system weight in the 6.5 to 9 1b range and an average power requirement of less
than 2 watts. These estimates were obtained by preparing fairly detailed preliminary
designs for each method. The final choice of the system design is dependent on
grid-appearance and anticipatéd updata communications channel errors as summarized
in Section 6. A simulated grid, characteristic of the coordinate method, appears in
Figure 1-2.

The digital methods require that picture times be predictable. Although
timing problems have been experienced with TIROS satellites in the past, this
problem will certainly not persist as there are no fundamental obstacles to obtain-
ing predictable shutter times. As a safeguard, the individual picture grids, stored
in the satellite memory, could very well be tagged with the times for which they
were computed. These times could be compared to an external or grid-system-
contained clock to insure that a grid is superimposed on a picture only if the shutter

is tripped at the predicted time.
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SECTION 2

GRIDDING REQUIREMENTS

2.1 GRID LINE SPACING

The initial specification for grid line spacing is as follows:

Latitude spacing on picture

a, 2° from 0-70° latitude, north and south

b. 4° from >70° no‘rth and south

Longitude spacing on picture

)

2° from 0-40° latitude, north and south

4° from 40-70° latitude, north and south
8° from 70-82° latitude, north and south
400 from >82° latitude, north and south.

o

0

If this spacing were maintained for the complete height range of the satellites
(400-800 nm. ), pictures taken at the higher altitudes would be virtually obscured by
the grid lines. Figure 2-1 shows a picture grid with a basic 2° interval as suggested
above for a height of 800nm. It is obvious that the grid line spacing must be either a
function of altitude or if it is to remain constant, it must be made larger than specified
above.

The problem of grid line spacing has been previously examined in some detail.
Picture data from the APT system will often be manually transferred to a base map.
Widger and Glaser have shown that these base maps are almost universally graduated
in 5° intervals, * making the transfer from a 2° gridded picture to a standard map

extremely laborious. For these reasons we suggest the following grid spacing:
Latitude: 5° throughout

Longitude: 5° - equator to 60° latitude
10° - 60° to 75° latitude

* Widger, W.K., Jr., and A.H. Glaser, 1963: A Rationale for Geographic Referenc-

ing of Meteorolojica.l Satellite Data, Technical Report No. 1, Contract No. NAS 5-
1204, ARACON Geophysics Company.




Fig.2-1 Grid With 2° Spacing for 800 NM Orbit
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20° - 75° to 85° latitude
40° - 85° latitude to pole.,

This has the additional advantage of maintaining a uniform spacing throughout
the vast majority of the habitable regions of the world,

An appreciation for the appearance of the grid lines as they would appear in the
pictures as a function of altitude can be attained by superimposing the camera aper-
tures shown in Figure 2-3 onto the OEC map of Figure 2-2. (The apertures are con-
tained in the pocket attached to the rear of this report.)

It is our recommendation that the 5° grid be universally used regardless of
altitude. Should strong objections to the 5° grid interval occur for pictures taken at
low altitudes, we would recommend that the basic 5° grid be maintained but that
2 1/20 lines, identifiable as such, be added between 5° lines in the picture. This will
still permit correlation of the grid and base map lines to be obtained easily. If the

21/2° grid is used, it is recommended that it be reserved for altitudes of <500 nm.

2.2 GRID LINE REFERENCING

The grid lines appearing in the picture must be somehow referenced to enable the
latitude and longitude identification of the lines. In the past, it has been common to
place a north arrow at one of the grid line intersections whose latitude, longitude
coordinates are sent with the picture. It would certainly be desirable to maintain this
method of grid line referencing for the on-board system. Alphanumeric characters
must be superimposed upon the pictures along with the grid lines to identify the co-
ordinates of the north arrow. With the basic 5° grid proposed, at least two latitude
or longitude lines are visible in the pictures even at an altitude of 400 nm. Thus, the
north arrow could always be placed at a latitude or longitude line which is an integral
multiple of 10°. This enables the lines to be identified with four alphanumeric charac-
ters. N or S (+ or -} and one decimal character will suffice to identify the latitude of
the north arrow and two decimal characters will identify the east or west longitude of
the north arrow.

The ease with which the alphanumeric characters can be generated in an on-
board gridding system is highly dependent upon the type of system chosen. For this
reason, a second alternate scheme of grid line referencing is proposed. North arrows
can be placed at fixed latitude and longitude intersections. At least one north arrow
must be visible in any picture which might be taken. The arrangement of the north

arrows on a global map must be such that a data analyst cannot confuse two sections
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of the globe over a wide enough band of latitude and longitude to preclude error.
Preferably a single fixed catalog of arrows would be employed for all altitudes. A
suggested arrangement of north arrows is shown in Figure 2-4. With the arrange-
ment of arrows depicted in Figure 2-4 an analyst must make an error of 10° in both
latitude and longitude or 20° in one of the coordinates in order to incorrectly identify
the lines. Since any receiver of the APT data must have a fairly accurate estimate of
the satellite orbit in order to operate the ground station (track the satellite) it is
extremely unlikely that he can make this large an error. His most likely error is an
incorrect latitude guess. Latitude of the pictures is primarily a function of time.

To make a 10° error in latitude, the estimate of picture time must be almost three
minutes in error. Since it is unlikely that this large an error in picture time will be
made, the fixed catalog of north arrows shown in Figure 2-4 should suffice to enable
error-free grid-line identification.

The identification of grid lines through superimposed alphanumeric annotation
is certainly superior to identification of grid lines through a fixed catalog of north
arrows. The alphanumeric picture annotation provides a permanent record of the
grid line coordinates. However it may be useful to compare the cost of the two

approaches.
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SECTION 3

DIGITAL APPROACHES TO ON-BOARD GRIDDING

3.1 STRAIGHT LINE METHOD

3.1.1 General

The straight line methods approximate the curved lines of the geographic grid
by a sequence of straight lines. In general the line segments should be made as long
as possible, subject to the limitation of a maximum one percent error, to minimize the
number of line segmehts and hence the required data transmission to the satellite.
Each line segment can be characterized by its initial starting coordinates and a slope.
If we are to have the longest possible line segments, the tolerable one percent error
should represent primarily the deviation of the curved true grid line from the straight
line. To obtain this condition the initial coordinates and slope of the line should be
represented with the highest precision with which it is possible to plot the points in
the picture. A single picture element is considered to be the smallest resolvable
distance in the APT picture. Thus the initial X, Y coordinates for the start of a line
segment are specified with ten bit precision. If the slope of a line were characterized
by the number of picture elements along a sweep (AX), the range of slope encountered
would be ﬁ (nearly horizontal line) to 800 (nearly vertical line). In a fixed point
notation system, a total of 20 bits would be required to achieve this range of slope. An
alternate manner of specifying slope is depicted in Figure 3-1. Lines which make an
intersection with the TV sweep of <45° (mode 0) are characterized by the increment
in Y for AX =K (mark spacing). Lines which make an angle of intersection with the
TV sweep which is >450(mode 1) are characterized by the AX corresponding to a AY of
K sweeps. If we ignore the perfect 45° line, the slope of any line can then be specified
with a total of 12 bits, one for the mode, one for the slope (pbsitive sloping lines have
a AX component in the sweep direction for increasing ¥), and 10 for the AX or AY.

A line segment once started, can be terminated in several different ways. If
these segments are stored in an addressable location in the satellite memory, a line
segment can be terminated by writing a new segment or a termination command into
the segment location. However a better way of terminating a line which is independent
of the type of memory employed, is to include in the segment specification the length

of the line. The segment length should be specified in terms of the largest available
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quantity to minimize the number of bits for the length specification. The largest
integral quantity which can be used for this purpose is the number of marks to be
layed down for the line segment. Thus the number of bits to specify segment length
will depend on the mark spacing. For a mark spacing, K = 8, a maximum of 100
marks will be layed down along any line. (This assumes that marks are spaced such
that the distance along a line between marks is K picture elements for mode 0 lines,
or K sweeps for mode 1 lines.) Thus, a line segment is specified by its starting
coordinates X, Y, (20 bits), slope (12 bits), and line length L (7 bits).

One of the important design parameters is the number of straight-line segments
which the system would be required to handle to grid the pictures of a complete orbit.
To obtain this figure, a number of grids were drawn for an 800 nm. peolar orbit on the
CDC 160-A computer at Point Mugu. (The 800 nm. orbit, showing the greatest earth
coverage, requires the highest density grid for an individual picture.) The number of
straight line segments required to grid this orbit was determined by manually fitting
straight lines to the curved latitude/longitude lines with a maximum estimated error
of one percent,

Table 3-1 shows the number of straight line segments needed to grid the pictures
of an orbit as a function of satellite height. From the table, we see that the maximum
number of segments is 372, if the 2 1/2° grid is employed only for orbits of 500 miles
or lower. An additional 30 line segments are needed to include north arrows in a 15

picture orbit. This brings the maximum segment total to approximately 400,

Table 3-1

Number of Straight-line Segments Per Orbit
Required for Picture Grid

5° GRID INTERVAL

Satellite Height (nm.) Number of Pictures Number of segments
800 10 360
400 14 150

2.5 GRID INTERVAL

500 15 372
400 14 288
3-3
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To reduce the amount of data which must be transmitted to the satellite, an
investigation was made of the possibility of treating a grid line as a total entity rather
than a number of line segments. The data for the line would consist of its initial
starting coordinates, the slope of the initial segment, and a constant slope change for
the additional segments of the line. Due to the nature of the slope changes, it was
found that a constant slope change could be applied only to a single segment, i.e., each
new segment would usually require a different slope change. The very small savings
in information transmission are offset by the increased complexity of the on-board
logic, sothis approach was dropped.

Assuming that each line segment required 39 bits for its specification, a total of
approximately 15, 600 bits must be transmitted to the satellite to produce the picture

grid. An additional 2,000-10, 000 bits will be needed for annotation, depending on how

annotation is accomplished.

3.1.2 Approaches to the Straight Line Method

Two different approaches to generating grid lines through sequences of straight
line segments were investigated. In the first approach, all line segment data for grid
lines in process is presented to the calculation logic in a time interval which is less
than the time required for the vidicon electron beam to move between two consecutive
positions at which a mark is allowed. If marks are to be plotted with a position
accuracy corresponding to a picture element, the grid line data in a buffer memory
must be completely cycled to the calculation logic in 310 microseconds. An attempt
was made to take advantage of the fact that marks on any given line segment are
spaced K picture elements part. Thus the calculation logic should only be required
to cycle in a time interval corresponding to the K picture elements. Figure 3-2
shows a fictitious array of perpendicular lines (mesh) spaced K picture elements
apart superimposed on an APT picture (m = K for this case). Grid marks may only
be located at the intersections of these lines. The maximum error in plotting a point
of the straight line segment is then £ 52 picture elements. If K =8, the error in
plotting the straight line is four picture elements, and the condition that marks be
spaced either horizontally or vertically every K picture elements is satisfied. It
should be noted that the error of i—KZ- elements must be subtracted from the tolerable
one percent error that the marks can deviate from the true grid line. This will tend
to raise the number of straight line segments required since the length of the straight

line segments must drop, to satisfy the reduced error tolerance. A block diagram of
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the SL-1 system appears in Figure 3-3. The grid line data transmitted from the CDA
station is stored in a thin film or magnetic core memory. When the picture taking
sequence is initiated, the Y portion of the word for the first line segment is compared

to a line counter. When the APT sweep reaches the value of the Y-coordinate of the
starting point of the line segment, the word is transferred from the main storage to a
circulating delay line storage. The delay line storage will contain all the line segment
data in process at any given time. The delay line cycles at a rate sufficient to present
all the line segment words to the calculation logic in the time interval which corresponds
to the distance between mesh lines. Each line segment word is examined by the calcula-
tion logic to determine if a mark should be made before each new mesh intersection is
reached.

Table 3-2 shows the structure of the line segment words in the buffer memory
which are delivered to the calculation logic for mark determinations every Kth sweep.
(From Figure 3-2 we see that marks are only allowed every K lines.) When a word
reaches the calculation logic its X value is examined to determine if a mark should be
made. If the value contained in the X position counter matches that of the X coordinate
in the segment word, a pulse is sent to the mark generator and new mark coordinates
are computed using the slope data. For a mode 0 line AY is added to the Y portion of
the segment word and the word is returned to memory. The value of Y for each line
segment word is decremented by one during the picture retrace interval for each new
mesh line. Thus when Y becomes less than one 2 new mark will be made and the
slope will again be added to Y. Each time the slope is added to Y the X value is
changed by one mesh interval in the direction dependent on the slope sign.

After the initial mark of the line is plotted (mode 1) the AX of the slope is added
to the X position value, and the word is returned to the calculation logic. The value of
Y is ignored for mode 1 lines, since marks are made every K sweeps for all mode 1
lines. .

The maximum number of line segments which must be handled by the buffer at
any one time (number of line segments intersected by a single sweep) is 17 for the
most dense grid corresponding to an 800 nm. altitude. If we include the possibility
of north arrow annotation, this number is increased to 23. This results in a storage
requirement for the delay line of approximately 900 bits, to be cycled every 2 1/2
milliseconds for K = 8. This figure is entirely practical for present day aerospace
qualified delay lines. However, a mesh whose lines are separated K picture elements,
requires a large increase in the number of straight line segments needed to fit the

curved gridlines. A satisfactory mesh spacing from the point of view of storage
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Table 3-2

SL-1 Word Structure

Number of Bits 1 1 20-2B 10-B 1 10-B 1 10-B 1
Content IH| X Y M| AX or| S L P
AY
used 1in

buffer only

2P -k (Mark spacing)

1 Index. Indicates absence or presence of data in each delay line
storage location.

H Hold. Used to end plotting of points of a given line segment on
 any given sweep. H is reset to zero for each new mesh line.

X,Y Initial coordinates of a line segment in updata. X position and
residue and Y residue in delay line.

M Mode.

S Slope sign.

AX or AX is the number of mesh intervals between successive marks

AY of a mode 1 line. AY is the number of mesh intervals between
successive marks of a mode 0 line.

L Line length (number of marks).

Parity bit.
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requirements (minimum number of segments) has its lines spaced apart two picture
elements. This forces the delay line operating speed up to two megacycles. As a
result, further work on this method was dropped in favor of the system described in
the following paragraphs.

The second approach to be investigated (SL -2), employs two separate fixed
meshes, one for each line mode. For mode 0 lines the vertical lines of the mesh are
spaced apart K picture elements. The horizontal lines of the mesh are spaced apart
a single picture element (sweep). See Figure 3-4a. The horizontal mesh spacing
permits the mode 0 line segment words to be cycled through the calculation logic in
a time interval corresponding to K picture elements, Points for mode 1 lines see
Figure 3-4b) are plotted on a mesh whose vertical lines are spaced apart a single
picture element, and whose horizontal lines are spaced apart K sweeps. The use of
these fixed meshes for plotting allows any line to be marked at intervals of K picture
elements. The direction in which the mark spacing (horizontal or vertical) equals K
is determined by the mode. The use of these meshes also permit marks to be plotted
with single picture element precision as can be seen from examining the marks for
the grid lines of Figure 3-4.

The word structure for SL-2 is shown in Table 3-3. In order to cycle the mode
1 line segment words through the calculation logic once every K picture elements, and
still retain the ability to make a mark at any of the 800 mesh intervals along a sweep,
the following logic is employed. The portion of the X position data which indicates the
mesh interval number of the next mark for a line segment is compared to the cor-
responding bits of the X beam-position counter. When the difference between these
two values is less than one mesh interval, the difference (in terms of picture elements)
is stored in a register. This difference is then decremented by one for each horizontal
advance of a picture element and a mark is made when the difference becomes 0. In
the meantime, the data for the segment will have been returned to the buffer memory.
The calculation logic which is applied to each of the modes is shown in Tables 3-4 and
3-5.

In general the block diagram for the SL-2 system looks quite similar to that for
SL-1, shown in Figure 3-3. Only those line segments currently in process are con-
tained in the buffer memory. Line segment data is withdrawn from the main memory
and stored in the buffer when the sweep count for the APT picture equals the initial
Y coordinate for the line segment. Since the data in the buffer storage (delay line) is
cycled through the calculation logic in a time interval corresponding to K picture

elements, the required clock rate remains relatively low (approximately 410 kc),
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Table 3-3

Word Structure Method SL-2

SL-2 Bit Sequence in Delay Lines

Bit Name S P L s w X R RL M H I

P m ‘"

Number of Bits 1 1 7 10 1 7 3 7 1 1 1

g x "

o)

(40 bits to TCL)

Index Bit. Indicates vacancy of address in delay line.
Hold Bit. Inhibits further marking on particular sweep for this word.

Mode Bit.

Least significant bits of residue (fractional part of X or Y in terms of
picture elements),

Most significant bits of residue in Mode 0. (Sweeps before next mark. )
Least significant bits of X address in Mode 1. (Integral number
of picture elements between mark and preceding mesh line.)

Most significant bits of X address. (Integral number of mesh
intervals to mark position. )

Sign of slope.

Slope in Mode 0. (Slope is AY for Mode 0.)
Inverse slope in Mode 1. (Slope is AX for Mode 1.)

Number of Marks to be made in this segment.
Parity Bit.

Spare Bit.
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Table 3-4

Mode 0 Calculation Logic

L s w M XM
(Line (Slope | (Slope | (Mode) | (Mesh Interval RI\’/‘I R’i‘j‘ H I
Length) AX) sign) Number) Hold | (Index)
Mode 0 Segment Word
* Integral number of sweeps before next mark,
ek Fractional number of sweeps before next mark.

1. 1f H (Hold bit) is ZERO,

A,

B.

D.
E.

F.

Compare X‘M to corresponding bits of X vidicon beam position

.counter.
When XM = beam position, test RM.
1f RM = 0, mark; = setH to ONE; add to or subtract from Xm

the quantity 1, as determined from slope sign; add slope (AY) to
RM + RL , decrement L.

If L=0, set I to ZERO.

1f RM# 0, reset H to ZERO.

Return word to buffer.

2. 1f H is ONE,

A,

Mark; Add to or subtract from X, , the quantity 1 as determined
by slope sign, add slope (AY) to RM e RL , decrement L.

If RM# 0, reset H to ZERO.
If L=0, setlto ZERO.

Return to memory.




Table 3-5

Mode 1 Calculation Logic

L S w M XM
(Line (Slope-- (Slope (Mode) Mesh Interval RM Ri* H
Length) AX) Sign) Number

Mode 1 Segment Word

Integral number of picture elements between mesh line XM and next mark.

''''' Fractional number of picture elements between mesh line XM and next
mark.

A, Compare X to corresponding bits of X vidicon beam position counter.
P M p g P

Mode 1 words are examined every Kth sweep only.

B. If His ZERO and XM - X beam position < mesh interval, store the dif-

ference (number of picture elements) in a register, decrement L.

C. Set H toONE;add to or subtract from RM + RL + XM the slope (AX) as

determined by sign bit W,
D. Return to buffer.

Decrement XM - X beam position for each horizontal advance of

one picture element.
When XM - X beam position = 0 , mark.

Reset H for mode 1 lines at end of each sweep.




while the point plotting accuracy is maximum. Certain other advantages accrue
from the SL-2 approach, including similar operations at similar bit positions of
the buffer word in the calculation logic.

When a negative slope of less than 1/K occurs, the normal addition of the
slope to the Y coordinate yields scan coordinates which have already been passed by
the vidicon beam. In the SL-2 system, these lines can be very easily handled in the
following manner. The initial X coordinate of the line is reduced by the number of
points to be marked on the first line. After the first mark is made, the slope addi-
tion (increment of Y) is made to Y and X is decremented by 1 in the normal manner
for the SL-2 system. In addition H is set to ONE. For each additional cycle of the
delay line, during the sweep, a2 mark command is generated until the upper three
bits of Y (Rm) are no longer zero at which time, H is reset to ZERO. This condition
occurs when the accumulated increments of Y add up to one line. Note that when H is
ONE, the test on X (comparison of X-scan and X-line values) is not a part of the
mark decision. Only after H is reset to ZERO is the X comparison again made a
part of the mark decision. This ignoring of the line segment X-coordinate is possible
in SL-2, since marks for mode 0 lines are generated at fixed intervals of horizontal
advance. Each time a mark is made the line segment X-coordinate is decremented
by one in a bit position that actually corresponds to a horizontal displacement of K
elements with the result that at the end of a mark sequence for a given line, we have
the correct initial position for the first mark of the line segment on the next line. A
maximum error of one picture element is made in plotting lines of negative slope
<% with the above technique.

The maximum number of straight line segments in this method which will be
stored concurrently in the buffer is 23. The mechanization developed further assumes
that every word is in the calculation logic for one word time; therefore, a total path
cycle time is 24 words. On this basis, the minimum clock rate is 388 kc. However,
it must be remembered that every K coordinate intervals the X counter changes its
value and during this changing time, no computation can be performed. This raises
the clock rate to at least 410 kc for K = 8, Because of the advantages of the SL-2

method cited above, a detailed mechanization of this method was performed.
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3.1.3 Logical Implementation of SL-2

A complete calculation and timing logic implementation was done for method
SL-2. The system used the internal bit sequence shown in Table 3-3. The complete
logic is shown in two separate diagrams. Figure 3-5 gives the calculation and
delay line control logic along with the output logic. Figure 3-6 shows the timing
and memory control logic, the pulse gate logic and the beam position counters. The
entire logic operates at a minimum frequency of 430 kc/s.

The basic serial clock is derived from the APT logic, is applied to a ring
counter of 40, The ring counter and associated timing circuits drive the calculation
logic., All the computations are performed serially in a 40 stage shift register which
is controlled by a network of switches and gates., In order to aid the study of these

diagrams, the following definitions are listed:

a. Symbols F and F refer to the vidicon sweep and retrace periods respec-
tively. These signals are obtained directly from the APT subsystem.

b. The p pulses are pulses of numerical sequence from 1 to 40 from the ring
counter.

c. The main control flip-flops are identified by letters and defined as follows:

E - The error flip-flop E is in the ONE state when the word being
viewed is not to be sent to the calculation logic. In the E state,
the shift register calculation logic is enabled.

I - When the Index flip-flop equals ONE, a segment word of 40 bits,
in the delay line contains an active line segment. When the flip-
flop is in the T state, the delay line at that address is empty or
contains a ward which has been fully marked.

M - The mode flip-flop M designates whether mode 1 or mode 0 de-
scribes the word entering the shift register. This flip-flop en-
ables and switches the proper logic so that the calculation is
correct for that mode. '

S - The segment flip-flop S when in the ONE state will admit new
data from the memory into the Y register and into the shiftreg-
ister. In addition, the flip-flop activates a gate which sets

I =1 in the delay line address being entered.



+/- The t flip-flop determines whether the incremental slope shall
be subtracted from or added to the slope residue. The flip -
flop is controlled by the W (sign) bit in the segment word.

A&B - The A & B flip-flops control the mark logic depending on

whether mode 0 or mode 1 lines are being described.

The mark logic is not shown; however, it is essentially the same as that given

in Figure 3-14 for the coordinate method.

3.2 COORDINATE METHODS

3.2.1 General

The coordinate method requires new information for each mark plotted to
approximate a grid line. Consequently, the coordinate approach is not economical of
storage. However, it can offer sufficient decrease in logic complexity for mark
calculation to offset the increased storage requirement,

The number of marks needed to produce the grid lines in the APT pictures is
dependent on the mark spacing, the method of picture annotation, and the spacing
of the latitude longitude lines. We will assume that the 5° grid spacing recommended
for the straight line system is adopted for the coordinate method. In drawing the grid
lines for the 5° grid for an 800 nm., 10 picture orbit, the equivalent of 156 straight
horizontal or vertical lines, completely crossing the picture, is produced. The
equ}‘i‘alent of two more complete lines is required to produce the north arrows in the
picture. If we assume that the mark density of the north arrow lines is twice that
of the grid lines, the equivalent of four additional complete lines is required, for a
total of 160 lines.

With a horizontal or vertical spacing of eight picture elements, 100 marks are
needed to produce a full line across the picture. The total number of marks re-
quired to plot the grid lines and a single north arrow per picture is approximately
16,000 for the 800 mile orbit. A complete X, Y specification of the coordinates with
single picture element precision would require a total of 256,000 bits. As a first step
toward reducing the required storage, let us consider how much of a reduction in the
precision of mark location specifications can be tolerated. The accuracy specifica-
tion of one percent error of the picture height or width permits marks to be laid
down at the intersections of a mesh whose lines are spaced 16 picture elements

apart {(n = 8) if no other factors contribute to position error. However, the appearance




of a line composed of marks placed at the intersections of such a grid is quite dis-
pleasing. Figures 3-7 and 3-8 show the appearance of lines drawn using fixed meshes
specified by n = 4 and n = 8 respectively, with marks spaced 8 elements apart

(K =8). Each mark is three picture elements long by one element wide to simulate
the white portion of the desired grid mark. A necessarily subjective evaluation of

the lines depicted in Figures 3-7 and 3-8 has resulted in our eliminating any further
consideration of drawing lines using the n = 8 mesh as long as the mark spacing
remains 8 elements. The use of n = 4 mesh allows us to specify points on a

line with a precision of 4 parts in 800, or 8 bits per axis.

A second possibility for reducing the storage requirement is a reduction in
the mark density. The initial specification called for a maximum mark spacing of
one percent of the side dimension in either X or Y displacement on the picture plane.
This would result in a mark density which is significantly larger than the density of
the grid-line marks appearing in the recent Nimbus AVCS photos. It is our opinion
that a mark spacing of 16 horizontal or vertical elements produces an adequate grid
and results in less occlusion of the pictorial data. Figures 3-9 and 3-10 show the
appearance of lines drawn with 4 and 8 element meshes with a mark spacing of 16
elements. It is suggested that the lines drawn with the 4 element mesh and 16 ele-
ment mark spacing represent a reasonable compromise between the storage reduction
and appeérance requirements.* Increasing the mark spacing to 16 elements reduces
the maximum number of marks required to produce the grid for an orbit to 8, 000.

A full coordinate specification of each mark with 8 bit precision for each axis brings
the total storage requirement down to 128, 000 bits.

The Y portion of the mark location coordinate set can be eliminated by inserting
line ""markers'' between sets of X coordinates for the marks of a single line. Thus
the word length for a mark is reduced to the eight elements of the X position. A
line "marker' is simply an illegal X code. Since the 4 element mark gives us in
essence a 200 line picture, 2,000 "marker'" words must be added to the storage

requirement (200 lines x 10 pictures for the 800 nm. orbit). The bit total is then

* If a mark spacing of § picture elements must be adapted, the ratio of mark spac-
ing to mesh separation <= should equal that of Figure 3-9 to maintain a pleasing
appearance of the grid lines. This requires a mesh specified by n = 2 for K = 8, The
X, Y coordinates would then be specified with 9-bit precision for each axis.
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Fig.3-9 Appearance of Grid Lines
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reduced to 80,000, Line markers can be largely eliminated by employing logic which
detects a decrease in the value of the X coordinate of a word relative to the previous
word in a sequence. The X coordinate for each mark along a mesh sweep will in-
crease monotonically until a mark word for a new mesh sweep appears. For those
mesh sweeps during which no marks are plotted, or for which the X coordinate of
the mark is greater than that of the last X coordinate of the previous sweep marked,
two alternatives are available: 1) a line marker can be employed; 2) extra marks
located at the end of a sweep (or in the retrace interval) can be added. This tech-
nique permits a reduction in the bit total to approximately 70,000 bits to produce the
grid lines.

A system employing a full X address for each mark is described in Section
3.2.4.2.

3.2.2 Run-length Coding

Assuming that the coordinates of the marks can be efficiently represented through
a run-length coding approach, the distances between marks must be accurately deter-
mined. Grid marks are only allowed on the intersections of a mesh. Using a2 mesh,

n = 4, only 200 sweeps per picture will be used for production of the picture grid.

The average number of grid line marks per allowable sweep or mesh line is 4 marks
per mesh line. Thus the average distance between marks on a mesh line is equal to

50 mesh intervals. However the distribution of distances between marks varies
widely, as a function of satellite altitude, orbit inclination, and yaw. Consider the
grid depicted in Figure 3-11. There are approximately 7 meridians running up and
down the picture. If the marks of each meridian appear on every fourth mesh line

(16 picture element spacing) the average spacing between the meridian marks is around
28 mesh intervals. Three out of every four mesh lines would not bear any meridian
marks.

There are roughly six parallels running across the picture. The six parallels
would be represented by about 300 marks, and for the orientation of the grid shown in
the figure, about 90% of the mesh lines would have at least one mark belonging to a
parallel. The result is that about one quarter of the mesh lines would have distances
between marks clustered around 33 mesh intervals, 7-8% of the mesh lines would
have no marks and the remainder of the mesh lines would have distances between

marks averaging roughly 130 mesh intervals.
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Fig.3-11 Equator Picture from 800 NM with 5° Grid
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Next we can consider the mark distances (along a mesh line) if the vehicle is
yawed through an angle compensating the orbit inclination (9° for the grid of Fig., 3-11),
which results in the Equator appearing as a horizontal line. Our meridian marks
are spaced in much the same manner as they were in the case described above.
Three quarters of the mesh lines contain no meridian marks. However, now ap-
proximately 60% of the mesh lines have no marks belonging to parallels. Of the 40%
which do contain parallel marks, the average spacing between the marks for the
parallel is about 50 mesh intervals, but the spacings are widely distributed about
the average. For the Equatorial line, the spacing between marks is 4 mesh intervals
(K = 16). Moving toward the higher latitudes, the number of parallel marks per line
decreases and the mark spacing increases all the way up to a full line width (196 mesh
intervals). Thus we are faced with a distribution of distances between marks which
is a function of the orbit parameters, and which covers a range of 4 - 600+ mesh
elements (extending the count over more than one line).

The distribution will show some very pronounced peaks. Certainly the distance
of 4 mesh intervals (the mark spacing) will be encountered quite often for sections of
grid lines slightly inclined to the sweep lines. Another peak in the distribution will
occur around the average meridian spacing and will be dependent on the satellite
altitude. The peak will flatten as the orbit inclination approaches 45°, The peaked
nature of the spacing distribution curve suggests the application of efficient coding
techniques. However, the formulation of the appropriate mathematical model which
would permit the spacing distribution to be determined as a function of orbit para-
meters is considered to be beyond the scope of this study, in which all possible
approaches are to be considered. _

Some valid generalizations can be drawn from the above analysis. The dis-
tances corresponding to the meridian mark spacings (half the marks in the picture)
are clustered around 28 mesh intervals and would not exceed 60 mesh intervals for .
any orientation of the picture. These distances could be specified by fixed length
words of 6 bits. Approximately 50% of the distances between parallel marks on the
same sweep could also be represented by a 6 bit word. The remaining 25% of the
marks can be represented by a sequence of two or more words. Suppose we reserve
several of the six bit codes to represent the distances between true marks and false
marks. (A false mark would not appear in the picture.) Four codes are immediately
available, since the mesh interval distances of 0,1,2 and 3 never occur. If we make
the code of 0 (decimal) correspond to a distance of 63, distances between 64 and 126

can be represented by two consecutive words. The first word causes an advance of




63, but no mark. The second word causes an advance and a mark. The weighting

of the additional false mark codes might be graduated in binary fashion, (126, 252,
504) requiring about 2.5 words per mark for those mark distances which exceed 63.
This procedure would result in an average of 1.4 words per mark. The total storage
for the 8,000 grid marks would then be in the order of 65, 000 bits.

So far, we have only considered the highest (800 nm.) orbit to be encountered.
This orbit represents a worst case from the viewpoint of the number of total marks,
since the greatest number of grid lines appears in the picture at the highest altitude.
However, it is possible that the largest storage requirement exists for a lower alti-
tude. The number of pictures taken per orbit increases from 10 at 800 nm. to 15 at
500 nm.

The number of lines visible in the picture is roughly proportional to the ratios
of the side-to-side dimensions of the coverages on the earth. The number of pic-
tures which can be taken as a function of altitude is shown in Table 3-6. (The 208
second expose-scan cycle is the factor which limits the number of possible pictures.)
The adjacent column in the table lists the number of pictures which would be required
at each altitude to obtain continuous earth coverage with no picture overlap. The
second to last column lists the number of pictures which might reasonably be taken
without getting into excessive picture overlap for the higher altitudes. In the last
column, the product of earth coverage and the estimated number of pictures per orbit
is listed. This factor determines the relative number of lines and hence grid marks
visible in the pictures as a function of satellite height. The numbers indicate that
the number of marks will be relatively constant for the 500 to 800 nm. altitude range.

Another important consideration for a run-length coding system is the spacing
of the grid lines as a function of altitude. The numbers derived for the 800 nm.
orbit represents distances for the highest grid line density. If we examine the grid
for a 500 nm. orbit, we observe that the average distance between the meridians is
in the order of 25% of the picture width., This still permits the six bit word length to
be used for the meridian marks. With the decreased number of parallels in the
picture, more of the mesh lines will not bear a mark, making the number of false
marks needed to grid the picture somewhat larger. If the orbit inclination is on the
order of 450, the spacing can reach 33% of the picture side, in which case six bits
is no longer sufficient. In light of the increased storage necessary for the 500 nm.
orbit. which virtually cancels any bit saving for run-length coding, it would appear
that the use of the full eight bits necessary to specify the horizontal mesh element
of each mark is justified to obtain a flexible system capable of handling the grid lines

for any orbit,
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3.2.3 Mark Plotting through a Combination of Slope and Coordinate
Specification

So far, we have treated each piece of mark data as almost completely inde-
pendent of the previous piece. However to minimize the amount of data transmission
to the satellite, we should try to send only that part of a mark coordinate specifica-
tion which represents new information, and add some memory capability to the grid-
ding system so that critical parts of the data for past events can be retained. An
implementation of this approach might consist in having the data for the marks on a
new TV line consist only of the changes in the coordinates of the grid lines currently
being mixed into the pictures. Consider the potential points at which a mark of a
grid line can be placed relative to the last mark for the grid line. For a mark
spacing of 16 picture elements (horizontal or vertical -- depending on the slope) and
a mesh n = 4, the potential points at which a new mark can occur are shown in
Figure 3-12a. The number of allowable new positions is 16. With a four-bit code
we can then specify the next mark position for the grid line if we modify the last
mark coordinates in accordance with the code. If we maintain mark position registers,
one for each line in process, we can then specify the changes in the mark positions
from a store of 32,000 bits (8,000 marks). However, in making our choice of the
next coordinate for a grid line in this ;manner, we have not utilized any information
about the line other than the coordinates of the last mark laid down. Grid lines are
quite regular and predictable. We could then, divide the grid lines into two broad
categories, as shown in Figure 3-12b, and rarely would we be required to change
categories in the course of drawing out the grid line on the picture. Taking advant-
age of the regularity of the lines has thus reduced each new mark word to 3 bits
(while retaining an additional bit for each line in a buffer memory). Carrying this
technique to its ultimate, we'divide the 16 potential new mark positions into 16
categories or sectors of 10° average (Fig. 3-12c) and end up requiring a single bit
for each new mark position for a grid line, since only two potential mark positions
are allowed for a given sector.

A sector actually defines a slope band. The grid lines must be broken into
segments, where each segment is contained in one of the slope bands. Examine the
drawing at the top of Figure 3-13, and consider a line segment whose slope starts
at 0° and ends at 14°. This segment will be plotted by a sequence of marks occupying
position 1 (Fig. 3-13) relative to the preceding mark where the slope of the seg-
ment is zero. As the slope increases, the new mark position will oscillate between

points 1 and 2, and when the segment slope approaches 14° the new mark positions
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will occur to be at point 2 relative to each preceding mark. The basic logic and the
data required for this method of marking is listed in Figure 3-13. We can see that
10 marks can be plotted with a data requirement averaging 3 bits per mark.

To ascertain the practicality of this approach, the number of sector changes
experienced in drawing grid lines was approximately determined for the 800 nm.
orbit. For the recommended basic 5° grid interval, the number of sector changes
is in the vicinity of 300. Since this figure does not appear to impose any serious
limitation, we shall pursue the total storage requirement for this technique.

Note that Figure 3-12c includes point 17, even though this position cannot be
marked unless computed prior to the vidicon's sweep circuits arriving at the pre-
vious mark position. A four bit sector code can be used for the marks on a line,
segment, in combination with the individual mark words, until the slope of the line
changes enough to move the line marks into a new sector. We then have the lines
divided into segments, as in the straight line system, but the line segments are not
required to be straight. The initial coordinates of each segment must be specified
along with the sector code. The sector code is 4 bits long and a fifth (erase) bit is
needed to terminate lines in mid-picture. This yields a total of 21 bits to start or
end (mid-picture) a line segment.

For an 800 nm. - 10 picture orbit, approximately 250 line starts, 54 termina-
tions, and 278 sector changes occur for a bit total of 12, 306. Adding to this the
8, 000 bits for the 1 bit mark words, the total memory requirement for the grid lines
is approximately 21,300 bits. The total storage requirements of the slope-coordinate
method (including annotation discussed in a later section) is shown in Table 3-7.

Since the CM-2 approach appears to offer a much lower storage requirement
than the previously described coordinate methods, (CM-1A and CM-1R) while pro-
ducing better looking lines with simpler logic when compared to the straight-line
method, several design approaches were investigated and appear in Section 3.2.4.3,

A drawback to the slope-coordinate method is the requirement for dis similar
word lengths (1 bit mark words and 21 bit segment words). This requirement will

increase susceptibility to error as will be seen in a following section.

3.2.4 Coordinate System Designs

The various considerations of memories needed for main and buffer storage in
the coordinate and straight line approaches are treated in detail in Appendix C.
Appendix C contains weight and power estimates for memory units which can be used

for the systems described below.
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Table 3-7

CM-II Storage Requirements

K=16

Grid line starts
Grid line terminations (picture interior)
Sector changes
Additional line starts to resync
4 zone picture
North arrow starts (15 pictures)
North arrow terminations

Total sector words
Grid marks
North arrow marks
Annotation marks

Total mark words

Total storage

Total sector words
Grid marks

North arrow marks
Annotation marks

Total mark words

Total storage

250
54
278

270
30
30

912 x 21 bits word =

8000
200
2100

10,300 x 1 bit word =

912 x 23 bits word =
16,000
400
2,100

18,500 x 1 bit word =

19, 152 bits

10, 300 bits

29,452 bits

20,976

18,500

39, 476



The preliminary designs presented here were done to provide a firm basis for

the hardware estimates needed in comparing the various approaches.

3.2.4.1 Full X-Address System CM-1A

For coordinate methods CM-1A and CM-1R (run-length system), the bit stor-
age is approximately 80, 000. (Approximately 10,000 bits are needed for the annota-
tion which will be described in a later section.)

A general logical diagram of method CM-1A is shown in Figure 3-14 . The

principal logical elements are:

a. S-Stage Shift Register ""SR'" - This register holds the mark address word
from memory for comparison with the mesh interval address of the vidicon beam.
b. Counter "B'" - This counter has a maximum value of 192 and keeps track of

the position of the beam along a mesh sweep.

(Note‘: The case considered in Figure 3-14 is for n = 4 in which a 200 x 200

mesh is utilized,)

c. APT Timing Circuits - The binary divider chain and the horizontal deflec-
tion circuits in the APT subsystefn provide the basic gating pulses to generate the
required mesh, The mesh intervals are obtained by dividing the 2400 cps camera
pluses down to 800 cps. .

d. Parity Check Circuitry - The case considered in Figure 3-14 assumes that
a parity bit has been stored in the memory. If a parity error occurs, the flip-flop

E prevents any further marks from being sent to the video mixer.
(Note: Parity bits are not included in the memory estimate.)

e. EXCLUSIVE or Circuitry - For the implementation of Figure 3-14 ,
parallel comparison of the address is made in S solid state half adders. (Serial
comparison can also be done here; the net system differences will be small.) The

basic logical sequence for this implementation is as follows:

A word is advanced into ""SR'. If that word has proper parity,
then it is compared to the current state of counter "B'., Counter'B"

is incremented once for each mesh interval,
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When B = SR, a mark pulse is sent through Gate 1 to the mark
generation logic (unless a '""no mark' code has been sensed), At the
same time, nine 20kc/s pulses from the APT divider advance a new
word from memory into SR. This is done in less than one mesh in-

terval. The comparison circuitry is reactivated by flip-flop K.

3.2.4.2 Run-length System CM-IR

Method CM-1R utilizes a run-length code. A schematic diagram of this method
implemented in CTL logic is shown in Figure 3-15 ., The principles of this scheme
differ from CM-1A in that the 6-bit word consists of the mesh interval separations
between two successive marks, rather than 8-bit mark addresses.

Implementation of this scheme is particularly simple with a modified CTL
device which can be enabled as a shift register or as a binary counter. (The same
function can also be performed by a shift register loop counter.) The 6-bit ward
stored in memory is M = 64 - D where D is the number of mesh intervals between
two successive marks. The number M is first preset into a 6-stage binary counter.
After D counts, the caunter supplies an overflow bit which represents the occurrence
of a mark at the proper mesh interval location.

The logic in Figure 3-15 (CM-1R) shows the same functions as Figure 3-14

(CM-1A) but in this case, the functions have been mechanized.

3.2.4.3 Combined Slope-Coordinate System CM-2

Three different design approaches were considered for the CM-2 method. The
first, labeled CM-2H requires a higher logic speed and is very similar to SL-2.
Each line segment sector code and its mark bits are combined to form a singlé word.
See Figure 3-16. This has the advantage that all line segments are completely
specified by fixed length words for transmission to the satellite, Since the number
of mark words varies from segment to segment, ZEROES must be added to the Mark
bits to bring the total number of bits to 73 for each segment. (A maximum of 50
marks is made on any single line segment.) Each line segment word contains the line
segment length L, which eliminates the necessity to transmit line segment termina-
tion words to the satellite. Since 73 bits will be transmitted for each line segment,

the total transmission for the 250 line starts and 278 sector changes is 38, 500 bits.
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Fig. 3-16 Word Composition CM II H
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After receipt of the data in the satellite, the "empty' mark bit spaces in each
word could be eliminated before storage, since the line length L indicates the number
of mark words or bit spaces for each word. This drops the main storage require-
ment back to approximately 20, 000 bits.

The grid mark calculation logic is very similar to SL-2. (Note a mode bit is
included.) The primary difference is that the addition made to X or Y after a mark
is made is not a constant slope, but a value determined by the sector code and mark
bit. As each mark bit is used, the whole string of mark bits would be shifted one
place to keep the bits used in each calculation in the same relative positions for
each word. Since the mechanization is so similar to S1.-2, no further design work
was done on this approach. The principle advantage of the SL-2 type of logic used
for a CM-2 system is the retention of constant word length for data transmission
(hence reduced susceptibility to error). A disadvantage is the higher level of
complexity associated with the SL-2 type of logic.

The two other designs considered for CM-2 operate at low clock speeds and
bear the label CM-2L. A general block diagram appears in Figure 3-17. Both
systems use a buffer register to hold the sector data for each of the line segments
in process at one time. The buffer is a bit-sequential core memory. A woard space
for a sector code is available for each of the horizontal mark intervals (200 storage
locations for n = 4). The calculation logic and the buffer memory form a loop. The
contents of each word location are read, word and bit-sequential, to the logic in
synchronizm with the X advance of the vidicon beam, and then read back to the
buffer. A sector code is stored in the buffer in the word location which corresponds
to the X position of the next mark to be made on the segment specified by the sector
code. Most of the word locations will be empty since usually only 16 segments
intersect a single sweep. The word location holding the sector code must also have
space for AY, the number of mesh sweeps between marks, The basic operation
performed by the calculation logic is a moving of the segment data from one word
location to another, to maintain the proper X coordinates of the marks, and a
determination of the AY, (number of mesh sweeps) before the next mark. Each
time a mark is made, the calculation logic pulls a mark word from the main storage,
and uses it in combination with the sector code to determine the new memory posi-
tion and AY for the segment data for plotting of the next mark on the segment. Thus
the mark words must be ordered in the sequence in which they will be required by

the logic.
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The most efficient storage of the 21 bit segment words and the 1 bit mark
words is obtained if they are mixed, bit serial, in the order in which they should be
fed to the buffer and calculation logic. The method in which the 1 and 21 bit words

are separated (to be described in the following sections) is slightly different for the

two approaches.,

CM—ZLA

The composition of the sector codes is shown in Figure 3-18. The first bit
of the code (S) incidates the sign of the sbpeband. Lines which run (top to bottom) in
the same direction as the APT sweep are considered positive, The second bit (A)
defines the axis on which the two possible mark locations exist for a given sector,
and is equivalent to the mode specification described in the straight line section.

It will be convenient to retain the mode concept in describing this system. The
constant (C) portion of the sector code is composed to two bits (Co, Cl) for K = 16,

C specifies the number which is added to the value of the mark word to determine the
mark location. For example, suppose the line segment lies in the 26.5° - 37° slope
band. In this band each new mark may be at position 3 or 4 (Fig. 3-18) relative to
the old mark, For this sector, the change in X position is constant at 4 mesh
intervals. The AY is either 1 or 2 mesh lines. AY is determined by adding

the value of the mark bit to C. The position change of +4 for the sector data in the
serial buffer is obtained by a delay of 4 mesh interval times in reading the data

back to the buffer from the calculation logic.

For all positive sloping lines, position changes are obtained by the delayed
readback. For mode 1 lines, the delay interval may be 0-4 mesh interval times, as
determined by the sector code and mark word. The AY for mode 1 lines is always a
fixed interval of 4 mesh lines.

There are a total of 4 APT sweeps for each of the griddable mesh lines. The

CM-ZLA system uses each of the sweeps for marking as follows:

Sweep 1 - mode 0 lines of positive slope
Sweep 2 - mode 0 lines of negative slope
Sweep 3 - mode 1 lines of positive slope

Sweep 4 - mode 1 lines of negative slope

For any individual sweep, the word location read from the buffer corresponds
to the X position of the vidicon beam. The contents of the buffer are shown in
Figure 3-19, as it appears at the beginning of a mesh line if the buffer is visualized

as a shift register for purposes of illustration. For each mode 0 sweep, 50 locations
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17 ﬂ&‘#r—*'** |—=
16 S oPEY 2 ____}APT SWEEPS
13 BAND 3 —
4 a K216
13 5
12 11 109 8 7 6

LOCATIONS | THROUGH |7 ARE POSSIBLE LOCATIONS OF THE NEXT MARK
FOLLOWING X.

(SECTOR) vﬁgllsl\acfs * INTERVAL ALONG
NEXT MARK|SLOPE BAND|SIGN (S)[COORDINATE (A)[CONSTANT (C)| FIXED AXIS
IOR 2 0—14° + Y o ax=+4
20R 3 14—26.5 + Y I *
30R 4 26.5—37 + Y 2 *
40R 5 37-45 + Y 3 "
SOR 6 45-53 + X 3 aAY=+4
60R 7 53—-63.5 + X 2 "
70R 8 63.5-76 + X ! "
80R 9 76-90 + X o "
SOR IO 90-104 - X o "
10 OR |1 104-116.5 - X | "
il OR 12 116.5—127 - X 2 "
2 OR I3 127—135 - X 3 "
I3 OR |14 135—143 - Y 3 AX=—4
14 OR I5 143 —153.5 - Y 2 "
IS5 OR 16 153.5—-166.5 - Y I "
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N _J
% EQUIVALENT TO MODE Y
CODE

Fig. 3-18 Sector Codes K = 16
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are available in the buffer since mode 0 lines are plotted at 50 mesh intervals.

( Mode 0 lines are plotted at intersections of a mesh with 200 horizontal and 50
vertical lines.) Each mode 0 word location can hold six bits, sector, validity, and
AY,

The order of the corresponding sweep positions for buffer locations holding
mode 0 segments of negative slope is reversed in the buffer. As a result, the word
location corresponding to position 50 is read to the calculation logic when the vidicon
is at position 1 on sweep 2. This enables negative sloping line segments to change
position in the negative X direction through use of the same delay technique employed
for lines of positive slope. The only limitation is that marks cannot be made during
sweep 2 and 4 at the time the calculation logic generates a mark command. Mark
decisions for negative sloping lines are stored as described below.

Mode 1 line segment word locations in the buffer are only three bits long since
no AY is required. Mode 1 lines are plotted at intersections of a mesh of 50 horizontal
and 200 vertical lines. Consequently mode 1 lines need be operated on by the calcula-
tion logic every 4 horizontal mesh lines (16 sweeps). Every 16th sweep, marks are
made for each of the mode 1 segments. The division of the line segments by mode
and slope completely eliminates the possibility of the calculation logic attempting to
write two segment words into the same word space in the buffer since 2 grid lines
whose slope difference is 45° cannot intersect. (Each of the 4 divisions represents
a 45° slope band.) Note that the division also permits the S and A bits of the sector
code to be dropped. These bits actually determine on which of the 4 sweeps asso-
ciated with a mesh line the buffer is loaded. The full 10-bit Y value of the segment
start determines the sweep (and hence the sign and mode) during which the buffer
should be loaded and the X value of the segment start determines the load time along
the sweep. (Data actually enters the buffer through the calculation logic as will be
seen below.) The timing diagram shown in Figure 3-20 shows some of the required
clock signals. Figure 3-21 shows the main storage-logic interface and the arrange-
ment of segment and mark words in the main memory. The YO,'XO values for the
initial line segment of a picture (the first 18 bits after picture sync) are loaded into
a register and compared with the X, Y vidicon beam position vounters. When equality
is obtained, the 2 bits of the sector code (Co, Cl) are read into the calculation logic
for subsequent buffer loading. The next data which appears in the: memory is the
Yoxo for the next line segment which will be started regardless of its starting
position in the picture. These data are advanced into the 18 bit register immediately

following the withdrawal of the sector code of the first line segment. The next bit in
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memory will be a mark word associated with the first line segment. If a second line
segment is to be started before the second mark of the first line is made, its sector
code will come next in memory and will be withdrawn when its XoYo values, pre-
viously stored in the 18 bit register, are equal to the values in the beam position
counters. The extension of this sequence is obvious. Sector codes are interlaced
with the mark words in the sequence required by the calculation logic to plot the
desired grid lines.

The calculation logic and buffer storage are shown in Figure 3-22. First con-
sider the sequence of events for mode 0 words. The contents of the six bit word
corresponding to a beam position are read from the core buffer (or main memory)
into the A and B registers. If the word contains segment data, a clock pulse is
passed by AND gate 13 to the input of AND gates 4 and 12. The output of 12 causes
the AY to be decremented by one. The output of 13 will pass through 4 and generate
a mark command if AY (B register) = 0. If the slope is positive, the mark command
passes through gate 20 to the mark generator. If the slope is negative, the mark
command is stored in a 200 bit storage register, which is read out in the reverse
order to storage on the next sweep.

When the word is first read into the A and B registers, the COC of the word

is added to the next available mark word and stored in C. The outputlof 4 (mark
command) causes the sum of COC1 and the mark word to be read into the B register
to form the new AY, and the word is clocked through gate 17 and a four word interval
delay back to the memory. A new mark word is read from the main store only when a
a mark command is generated.

For mode 1 lines, gates 2 and 3 cause the B register to be bypassed and the
three bit mode 1 words are read to A. Simultaneous with the loading of register A,
the sum of COC1 and the mar1.< wotI];ld are loaded in the C register. (Calculation is
enabled for mode 1 lines every K~ sweep.) If presence‘of data is established
(validity bit = ONE), the output of gate 13 sets FF1 which inhibits the clock pulses
which will return the word in the A register to the buffer. - The C register contains
the number of word delays for the segment data in A to obtain the proper X-coordinate
for the new mark., This value is decremented by one from the word clock. When it
goes to zero, a pulse is delivered to the reset input of FF1, allowing the data to be

returned to the buffer,
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CM-2L B

The design of CM-2L g uses a buffer memory which does not separate the seg-
ment data by sign and mode. Two hundred separate word positions exist in the
memory, one position for each mesh interval on a sweep.

The design was accomplished for a mark spacing, K = 8. The sector codes
are shown in Figure 3-23,

A four cycle operation is accomplished for each horizontal mesh line as follows:

Sweep 1 - Load new sector data from buffer, decrement
AY, mark.
Sweep 2 - Compute next mark position for each line seg-

ment of positive slope. This is done by combin-
ing a mark word with the sector code to compute
the new memory position (X coordinate) and AY.

Sweep 3

No grid mark operations

Sweep 4

Compute next mark positions for line segments
of negative slope. During this cycle, the data
from the buffer is read out in a sequence oppo-

site to that of sweep 2.

Figure 3-24 shows the main memory-logic interface. The calculation logic is
shown in Figures 3-25 and 3-26, Each buffer word consists of the three bit code
which identifies the sector, and a three bit code which will be used to: 1) indicate
the number of mesh lines between successive marks of a line segment, 2) provide
validity information for the memory location. The latter function is necessary
since all eight of the three bit sector codes are valid. The validity of the informa-
tion in a buffer memory location is established by adding one to the Y value between
successive marks. An empty buffer location is then determined by a zero-test on the
three bit Y portion of the segment data. Each segment is specified by a six bit code
in the buffer, for a buffer capacity of 1,200 bits.

The computation of the new X, Y values for a mark consists of a decoding of the
three bit sector code and the mark bit, an encoding of the new AY, and the determin-
ation of the delay for reading back to the buffer. The accompanying drawings illustrate
the operation of the system with parallel logic, although the operation can almost

certainly be performed with more economy of circuitry if serial logic is employed.
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Locations 1 through 9 are possible locations of next mark relative to X .

Fixed

9 Next Mark Sign (S) Axis (A) Constant (C) Condition
26. 5° 1or 2 + (1) Y (1) 0 (0) AX =+ 2
18.5° 2 or 3 + (1) Y (1) 1 (1) AX =+ 2
18.5° 3 or 4 + (1) X (0) 1 (1) AY =+ 2
26.5° 40r5 + (1) X (0) 0 (0) AY =+ 2
26.5° 5 or 6 - (0) X (0) 0 (0) AY =+ 2
26.5° 6 or 7 - (0) X (0) 1 (1) AY =+ 2
18.5° 7 or 8 - (0) Y (1) 1 (1) AX = - 2
18.5° 8 or 9 - (0) Y (1) 0 (0) AX = - 2
Sector Code () () ()

Figure 3-23

Sector Codes K = 8
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Occasionally, the computation will call for the loading of the segment data into
a buffer position already occupied (intersecting lines). This situation is remedied
by making a test on the Y portion of the subsequent word spaces which might receive
the data. (The system illustrated has five words available to the logic at one time, an
unnecessary constraint in a serial system.) In the process of decoding the segment
data to determine the new X coordinate, the results of the tests which indicate
occupancy are included so that the new X, Y positions computed are those for 2AX if
the values for 1AX results in two words occupying the same buffer position.

With the system described above, the required bit rate in the logic section is
only 4.8 kc making all magnetic logic quite feasible. Operation of the buffer in both
the forward and backward mode allows lines of any slope, including lines of very small
negative slope, to be drawn.

On nearly horizontal lines, the segment data will move from one position to
another before a mark cycle is reached, requiring a temporary storage of a mark
command. This is obtained by writing an illegal code into the Y + 1 portion of the

word, which is erased on the subsequent mark cycle.

3.3 THE ELLIPSE METHOD

3.3.1 Description

Appendix A shows in some detail the. fact that all latitude and longitude lines
seen in an undistorted picture are ellipses or sections of ellipses. Within limits,
distortion can also be accommodated by modifying the ellipses.

This geometric fact leads to a possible technique ot on-board gridding, the
sending of basic or composite barameters of each ellipse to the satellite, followed
by expansion of the ellipse synchronously during scanning

Such a technique has been suggested, but not adopted, for ground gridding of
AVCS. The ground technique was oriented to the peculiarities of the CDC 924
computer, so should not be used as more than a general guide to an on-board tech-
nique.

Expansion of the grid is achieved by inserting the Y-value (line- count) into the
grid expansion formula, inserting the proper parameters for each ellipse, and solv-
ing for X, the element count along the line. This is repeated for each ellipse to be
gridded on a given forthcoming scan line. The latitude and longitude ellipses can be
ordered on the ground, so that two ordered sets of X-coordinates are produced.

One simple expedient for avoiding merging these sets is gridding latitudes only on
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even lines, longitudes on odd; the penalty for this is a coarsening of slope capabilities

for near-horizontal lines.

Special logical provisions must be made for:

Grid line initiation at top of picture
Grid line initiation at sides or within picture
Grid line termination at sides or within picture
Rejection of grid points falling outside picture area
Increasing vertical density of gridding with diminishing slope
Coping with near-horizontal lines, so that several grid marks
may fall on one line
None of these logical requirements is unique to the ellipse technique. Eventual out-

put is achieved by an equivalent to the GRIPE technique.

3.3.2 Parameters of the Ellipse

The general ellipse is described by a set of 5 parameters. One description of

this set is:

semi-major axis

semi-minor axis

orientation of semi-major axis
X and

Y coordinates of center of ellipse.

While we have not searched extensively, we have found no effective way of essentially
reducing the set by making one or more parameters serve for all latitude or longitude
lines within a picture.

In addition to the basic set, additional information is required to terminate the
ellipses within the frame of the picture and to suppress those parts of the ellipses
that would enter the frame from the back of the mathematically transparent earth.
Still further information is required to originate and end ellipses that are wholly
contained within the picture frame (polar latitudes).

The ellipse computation equations of Section 5 of this report show that the
basic parameters enter into subtractions, so that somewhat greater precision is
required in specifying parameters than is desired in the final results. This suggests

8 bits for each of the basic parameters, 7 bits for beginning or otherwise specifying
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the character of the grid, another 7 bits for longitudes if it is desired to
terminate them within the picture frame, and 1 bit for the sign of the radical to
keep back-of-earth grids out of the picture and permit grids of either slope.

In counting ellipses, any ellipse that goes through zero slope is counted

two, as is an ellipse that leaves the picture and enters again.

3.3.3 Storage Requirements

For the worst case 800-mile orbit with 5° grids, some 250 ellipse segments
will be encountered. Leaving aside the problem of termination within the picture,
48 bits are required to specify each ellipse. Thus, the minimum tenable storage is
12,000 bits. Markers, frame syncs, etc. plus any addenda to simplify logic (see
below) may double this number to about 24, 000 bits.

Storage requirements are relatively small, but are similar in magnitude to

other compact-storage techniques.

3.3.4 Logical Requirements

Expansion of the basic ellipvse formula requires one square root, three
multiplications, and four addition/subtractions per grid point. This is in addition
to the logic required to start and stop lines and to produce a suitable density of grid
marks regardless of grid slope, all of which must act essentially serially.

While the level of arithmetic and logic suggests either a stored-program
computer or its equivalent in a sequential-instruction wired program, a custom
computer might be able to save time be performing one multiplication while the
square root is being performed, and by providing internal gating for logical options.

A characteristic K = 16 picture contains 800 marks to be computed in 200
seconds or about 250 milliseconds per mark. Extensive output buffering can permit
computation speeds of this order, although it may be desirable to at least quadruple
this speed to permit grid points on each line with only a one or two line buffer.

In units of add time we have:

4adds @1
3 multiplies @ 4 12
1 root @ 10 10
26
logic and data shuffling 24

50 add times per point
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Even with quadrupled speed, this calls for an add time of 1.25 milliseconds.
hardly speedy by modern standards. This low speed requirement suggests the use of
delay line serial arithmetic for dodging the requirement for random access interim
storage. This unfavorably changes the relation between multiply and add times, how-
ever, and may well introduce wait times. The result points to a delay line approach-
ing a megacycle rate, plus a fair amount of busy logic.

Looking at the problem with more perspective, the ellipse technique apparently
requires an on-board computer with multiply, add, square root (wired or programmed),
input-output, and nearly full logical capabilities. Its speed need be only medium,
and its random or serial access storage can be of the order of 1, 000 bits. Such

spaceborne computers are doubtlessly available.

3.3.5 Evaluation

Compared to other potential techniques, the ellipse method calls for equivalent
storage and nearly an entire computer, plus GRIPE. Design of an appropriate
special-purpose computer has seemed unprofitable to us, and the ellipse technique

has not been pursued further.

3.4 ANCILIARY FUNCTIONS

3.4.1 Numeral Generation

3.4.1.1 Introduction

The generation of numerals on the picture to identify selected latitude and
longitude grid lines can require the use of additional logic which is separate from
the calculation logic used for generating marks for the grid lines. In the coordinate
method, the annotation data are included with the grid data, but numeral marks will
appear only on mesh sweeps unless more equipment is added. Extra storage is
needed to make marks along the sweeps between meshes if it is desired to produce
more attractive numerals. Examples of both types of numerals are given in

Figure 3-27.
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(a) Numerai with marks along every fourth sweep

(b) Numeral with marks along every sweep
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Fig. 3-27 Numeral Appearance




3.4.1.2 Numeral Generator, CM-1A; Marks Along Every Sweep

In this case, we assume that it has been decided beforehand that numeral
notation shall be made between sweeps Ya and Yb. This information is pre-
programmed into the spacecraft so that when sweep Ya is at hand, the numeral
generator knows that the information immediately following the next sweep change
is numeral information and is not intended for use in grid mark generation. The
four annotation characters will take up 26 mesh intervals along the sweep and 7
mesh sweeps for 5 x 7 matrix numerals with a space of 2 matrix elements between
adjacent numerals. (Numerals are each 20 picture elements wide and 28 sweeps
high. Spaces are 8 picture elements wide. ) Following the arrival of a numeral
identification code after Y, the numeral mark locations are fed into an integrated
26-bit (or more) recirculating shift register. This loading may be done during the
retrace time. This register delivers a sequence of "mark" or "no mark" signals
during 26 mesh intervals at the beginning of sweep Y  and for the next three sweeps
between mesh sweeps. These data are dumped at the next mesh sweep and are
replaced by new data to be used on that mesh sweep and the three sweeps following.
Seven sets of data are used for a 7-high dot matrix. Numerals as shown in Figure 3-27
will be generated. At Yb, the auxiliary register is retired until the next picture.

A code can be saved by making the numeral start coincident with a zone start. The

additional storage required for annotating in this manner is about 2, 700 bits.

3.4.1.3 Numeral Generator, CM-1A; Marks Along Every Fourth Sweep

If the extra register is not used, the annotation marks will occur only every
fourth sweep (for n = 4). Numerals as shown in Figure 3-27a will be generated.
In this case, annotation of numerals merely requires mark location data to be -
stored in memory exactly as for marks used in plotting grid lines. For a 5 x 7
matrix of 35 possible points, each numeral will require about 12 marks. The four
characters then require 48 marks per picture. For the 15 picture orbit, we then

require 720 addresses (5,800 bits) in memory.



3.4.1.4 Numeral Generator, CM-1A; Marks on Non-Mesh Sweeps Only

A method somewhat easier to implement than that described in 3.4.1.2 is
shown in Figure 3-28 in logical form. In this method, only the non-mesh sweeps are
marked with the character data. For simplicity, characters are placed on the first
28 sweeps and first 26 mesh intervals and occupy the upper left hand corner of the
picture. In order to avoid the necessity of loading during retrace, the entire logic
is merely operated on the sweep following the first mesh sweep (M + 1) and after
every Kth sweep thereafter up to sweep 28. On sweep M + 1, data is read from memory,
marked, and placed in the temporary storage register. It is recirculated and re-
plotted on the remaining interval sweeps, but, is erased before the next mesh sweep.
In this way, numeral and grid data can overlap with no interference or extra circuitry

for a load operation during retrace.

3.4.1.5 Numeral Generator, Straight-Line Method

In the case of the straight-line method, an alternative to numeral generation from
a dot or mark matrix is to approximate the numerals by short straight lines. The
approximation of the numerals by sets of straight lines requires up to 17 extra seg-
ments per picture, and would call for a delay line with a bit rate and storage capacity
about 20% higher than at present. This method also adds approximately 10, 000 bits
to the 16, 000 needed for grid lines,

3.4.1.6 Numeral Generation Evefy Sweep; Straight-Line Method

Although the method outlined in the previous section involves no extra logic
it will not produce pleasing numerals due to the wide spacing between marks. A
modification of the auxiliary storage method described in Section 3.4.1.4 for the
coordinate methods can be used in the straight-line method.

As previously described, following the occurrence of a specified Y sweep,
counters indicate that the next data out of the memory must be numeral data. This
data is sent to the auxiliary storage register during the next retrace time. On the
following sweeps the data in the auxiliary register is superimposed on the grid data
from the calculation logic. This process is repeated for the required 23 sweeps of
the numeral matrix. Due to the fact that extra timing is required to provide proper

sequencing during retrace, the logic required to perform this annotation implementation
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is estimated as 10% above that required in the coordinate method. The parameter
estimates of Tables 3-11 and 3-13 have assumed the use of the technique described

here.

3.4.1.7 Numeral Generation; CM-2

For the CM-2L, version of the slope-coordinate method, annotation characters
are generated by loaaing a shift register (read out every sweep) with single bit mark
words from the main store. The words are automatically loaded at times correspond-
ing to the X, Y coordinate positions reserved for annotation. The only extra circuitry
required is the shift register and the modules needed to produce the proper clock
pulses. Insertion of the annotation mark words in the proper place in the data stream
is an extension of the logic already required for the slope-coordinate method. The
appearance of the characters is shown in Figure 3-29. The additional storage re-
quirement for annotation is approximately 2,700 bits. CM-2H annotation is the same

as SL-2.

3.4.2 Satellite Orientation Corrections

3.4.2.1 Coordinate Methods, Orientation Correction

In either CM-1A or CM-1R, the corrections for pitch and roll are made rather
easily. The detection of a roll error indicates that the location mark S along a mesh
sweep are incorrect. The roll error is sampled at the time the picture is taken. In
the case of the run-length coordinate method, a roll correction can be made by
simply adding or subtracting a single value at the start of each run length sequence.
For the case of the full address coordinate method, the correction must be added to.
each address ward. Either method can be implemented by the insertion of a full
adder just following the output of the memory. In the run-length case, the adder is
activated at the start of each sequence. In the full address method, it is activated
each time an address word is selected.

An alternate roll correction method is to shift the time axis by presetting

(up or down) the X mesh interval counter.
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Both methods, although in many ways easy to operate, allow a whole class of
points that cannot be put on the picture to reach the calculation logic, and a com-
parison must be made to allow the memory to advance to the proper location as each
sweep is changed.

Correction for pitch can be made similarly by delaying or advancing the count
of the Y interval counter. The consequences of this situation are not as severe as
that for the mesh interval roll correction as sweeps which are shifted off the picture
due to a forward pitch are covered by the methods already described, that is, they
are rejected. Sweeps that are shifted off the picture by backwards pitch would not
be plotted since they would not leave memory until after the vertical sweep had been
terminated. Sweeps that may be 'left over' in the memory following a pitch cor-
rected picture would be wiped out when the synchronizing system automatically seeks
the start of the next picture.

In the slope-coordinate system, portions of line segments cannot be dropped
without upsetting the operation of matching mark words to segments. This situation
can be remedied by prohibiting grid line marks within 3.5% of the picture borders.
For this condition, marks would not move out of the borders for a 3° roll or pitch
error. The corrections for pitch can be made by adding to or subtracting from the

Y counter., Roll corrections can be made by presetting the X counter for each sweep.

3.4.2.2 Straight Line Orientation Corrections

The compensation technique for pitch and roll in the straight line methods is
similar to the technique outlined for the CM-1 methods. However, the timing is
somewhat more complicated because of the more complex word structure. With use
of an adder at the memory output, pitch and roll correction can be obtained by adding
fixed numbers to the origin X and Y address. ("'Origin' means the point at which

a straight line segment begins.)
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3.5 SYNCHRONIZATION AND ERROR DETECTION

3.5.1 Updata Transmission System

3.5.1.1 Modulation Form

The data transmission system will use the basic OGO FSK/AM and Command
Data Link built for the Nimbus system. The binary data are put in NRZ form and
used to establish ''zero'" and ''one' audio frequencies. Since the NRZ form does not
yield positive sync, the basic bit rate is superimposed by AM on the FSK signal.
The composite signal is amplitude modulated on an RF carrier and sent to the satel-
lite. In the satellite, an FSK demodulator and an envelope detector recover data
and bit sync from the signal. The APT Gridding System should use a separate FSK

demodulator from the command demodulator already on board the satellite because:

a. The APT Gridding bit transmission rate is one or two orders of magnitude
faster than the command data rate, and would be too fast for the narrow band FSK
demodulator already on board. The FSK command demodulator would have to be
modified (thus reducing the noise margin in the command link) to recover the wide
band data transmission.

b. It is desirable that existing satellite systems be modified as little as

possible.

3.5.1.2 New Commands

"GRID DATA START" and "GRID DATA END'" commands should be added to the
Nimbus vocabulary. In addition. "GRID DATA HOLD'" should be added if it is desired
to have the capability to interrupt and later to resume grid data transmission. The
FSK APT data demodulator supplies to the APT gridding subsystem the data ob-
tained from the ground along with a bit synchronization pulse train. Word sync is
contained in the data in appropriate codes and is inserted at pre-planned times.

The APT gridding demodulator would be turned on and off by the new commands

described above, via the existing command decoder.
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3.5.1.3 Updata Error Rate Due to Thermal Noise

The theoretical performance of an OGO type FSK demodulator is shown in
Figure 3-30 taken from "Command System Study for the Operation and Control of
Scientific Satellites'" by ADCOM, Inc. The signal-energy to noise power density

ratio is given by:
E _ ST _ S
~ T ~w C TVR

Where §N is the demodulator input signal-to-noise ratio, W is the bandwidth in which
the noise power is measured, and T is the bit duration or inverse of the data rate.

We have been informed that under the worst condition of thermal noise,

5

audio

= 50 (17db)

Assuming the fastest available data rate of 1, 600 bits/sec and Audio Bandwidth =
20,000 cps.

we find
= = 42000 50 - 620 (28an)

The 28db point is well below the bit error rate of 10714 4¢ the bottom of the
graph. With respect to thermal noise disturbance, to which the 17db SNR figure

presumably refers, the system is essentially error free.

3.5.2 Demodulation and Bit Synchronization

The decoding of the FSK/AM audio signal from the receiver-detector to a
string of '"ones'" and 'zeros' is a standard procedure such as shown in Figure 3-31,
This figure follows the logical design used by Space Technology Laboratories for
their OGO satellite command demodulator. The logic shown presents "one' and
"zero'' pulses. The two separate detection systems supply the bit synchronization
information and the decoded data. The time constant of the ehvelope detector in the
bit synchronization decoder effectively determines the time required for positive

synchronization in the absence of noise.
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3.5.3 On-Board Word Synchronizing and Error Detecting
System for CM-1A

3.5.3.1 System Outline

The following statements will give an overall picture of the system.

a. Data is addressed in an 8-bit code representing the mesh interval value
along a mesh sweep.

b. Along any particular mesh sweep, the address values must be monotonically
increasing.

c. Sweep sync is contained in the updata by means of a 24-bit synchronizing
code that is transmitted at the start of each monotonic sequence.

d. A parity bit will be used for checking the fully addressed code. We accept
the possibility that an occasional single point may be plotted in the wrong place.

e. The synchronizing code sent from the ground is not placed into the memory.

f. Error detection circuitry to be outlined is included in the decoder which
removes codes found to be in error through detection of an address decrease before
the end of the data for a single sweep.

g. The observation by the synchronizer logic of a decrease in the address
value (after error checking and loss of sweep sync data), indicates that a sweep
change (new mark line) should occur. For mark sweeps on which the above interim

is not satisfied, line marker codes or extra marks at the sweep end must be used.

Once the data has been placed in memory, the operational sequence is as

already outlined for the full address coordinate method

3.5.3.2 Logical Description of Word Synchronizer

As shown in the timing diagram of Figure 3-32, the first word in the updata
stream is a 24-bit synchronizing code. Initial conditions on the .logic of Figure 3-33
are such that Gate 3 causes a sync search to be made after each bit clock pulse C.
Following each clock pulse, the counter of 24 enables the 24-stage shift register and
the serial synchronizing code generator and an exclusive OR circuit compares the
shift register content to the fixed code. The number of errors in each 24-bit sequence
of this comparison are counted. If three errors in a single search are accumulated,
sync has not been obtained. Calculations of probabilities for the 24-bit Barker Code
indicated that allowing two errors still yields a very high probability of correct word

sync.
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When the 24-bit sync code is recognized and less than three errors occur, flip-
flop E will remain in the E state at the conclusion of the search., The 24th high-speed
clock-count will then load another counter of 24 (in a more sophisticated design the
two counters could be consolidated) and beginning with the next C pulse, the 24-bit
sync word will be replaced by data. At the conclusion of the 24 counts, flip-flop B
is in the E state, Gate 2 is enabled and memory write begins,

As successive 8-bit words appear at the input and output of the final eight stages
of the shift register, a check is made to determine the monotonic increase of the
signal addresses. In addition, every 8 pulses a sync search is made. This procedure

continues until one of the following conditions arises:

a. A borrow pulse is emitted from the subtractor due to a decrease in the
X address, or
b. The recognizer determines that the 24-bit synchronizing code has been

received.

In case of an error causing a decrease in the X address, the system goes into
sync search and will not put any data in memory until the next synchronizing code
appears.

If no errors have occurred during the time between two sweep syncs, the sys-
tem will automatically continue iﬁ operation, The 192 code indicates an address at
the very end of the picture and its presence assures that a monotonic sequence indi-
cating an address decrease at the end of the sweep would be noticed by the calcula-

tion logic even if bit errors had occurred,

3.5.3.3 General Synchronization Techniques

The logical structure of the equipment described in the previous section will
not be radically different for methods other than the 8-bit fully addressed coordinate
method. Of course, the search for the monotonically increasing -address is unique
to method CM-1A, The error detection in the case of method CM-1R would more
probably rely on single or double parity bits which would not be inserted into the
main memory. In the case of the straight-line method, the synchronizing problem
changes slightly due to the longer word (40 bits) for a line segment. Here again the
search for monotonic increases of the Y address can be done as an error detection

technique, in addition to multiple parity bit insertions. In estimates of size, power
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3.5.4.2 Run-Length System, CM-1R

In this system, each mark is given an address relative to the previous mark.

The X counter is zeroed every time a mark is plotted.

tinues for one entire zone.

The run-length sequence con-

The first line below shows a set of possible codes placed in memory and intended

for the ith sweep. The second line shows the mesh interval values of the marks.

third line shows an error picked up due to a one-bit change in the codes.

4 41 36 39 33 - Run Length Address
45 81 120 153 - Resultant X Location
5 57 36 39 33 - Incorrect Run Length
, Address
5 61 97 136 169 - Resultant X Location

The

All points following the mark in error are plotted incorrectly. Since the run-count

extends beyond one sweep, this displacement along the X axis (to the right in this

case) is picked up everywhere resulting in a plausible but displaced grid structure.

A parity bit could detect the presence of this error, but even detection of the
error would not help in reconstructing the correct picture. In fact, a single error

necessitates scrubbing the remainder of the zone. If we add line markers to note

the end of each sweep, we can shorten the run-count and limit the error to just one

sweep. But, the extra line marker codes require considerable additional storage;
six bits per word,, 200 words, 10 pictures, = 12,000 bits, exclusive of parity or

sync bits; if parity is added to this coding scheme, we add 11, 000 more bits.

3.5.4.3 Straight-Line Method

In both straight-line methods so far implemented, the basic line segment word

is stored in serial memory and is fed as demanded by the logic into a cycling delay

line.
information. _

The least important error takes place when the segment length is altered by
an error. The segment will be shortened or extended and no interaction with the
rest of the rest of the picture takes place. If the slope, slope sign, or mode bit is
in error, the resultant line segment will not connect with its subsequent segments

and will yield a more-or-less obvious error.

3-70
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and weight, the synchronizing system described in the previous section has been
applied to all methods since there is no indication that the actual circuitry for any
of the methods would involve either principles or complexities very different from

the one described here.

3.5.4 The Effects of the Single Bit Errors on the Gridding System

3.5.4.1 Full X-Address, CM-1A

In this method of gridding, an 8-bit binary number is employed to locate each
mark. A mark is generated by subtracting the X-count along the sweep from the
available address. So long as this number is positive, nothing happens. When the
count equals the address, a mark is made. If the result is negative, the word in the
test register is less than the count, indicating that it belongs to the next sweep. A
contraint on the method is that the X address of the last mark on the ith mesh sweep
exceeds the X address of the first mark on the (i + l)St sweep. At the end of each
mesh interval count (192 intervals) the counters are reset. The process continues
for an entire picture until a word indicating end of a zone is read from the memory.

On any sweep, the X address monotonically increases and has values

A1 A

———A , where A, +1 >A_,
2 n i i

On the next sweep, each of these coordinates has increasedor decreased an amount
depending onthe slopes of the lines which they are approximating. The new addresses

are:

Suppose that an error occurs in Ai’ such that Ai >Ai + 1. A typical sweep

sequence and the same sequence with an inserted one bit (128) error is:

47 92 165 —— correct
5 175 92 165 —— error

In the incorrect sequence, marks at 5 and 175 will be plotted. When 92 is reached
in memory, the counter (having already plotted 175) will be past count 92 and a mark
at 92 will be plotted on the next mesh sweep along with 165, After this the process
will continue normally, but, delayed one sweep out of step.

If Ai -1« Ai < Ai + 1 then the only picture error will be a misplaced mark at
Ai‘ So long as the monotonic address increase remains undisturbed, this error will

not affect the overall picture.
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3.5.4.2 Run-Length System, CM-1R

In this system, each mark is given an address relative to the previous mark.
The X counter is zeroed every time a mark is plotted. The run-length sequence con-
tinues for one entire zone.

The first line below shows a set of possible codes placed in memory and intended
for the ith sweep. The second line shows the mesh interval values of the marks. The

third line shows an error picked up due to a one-bit change in the codes.

4 41 36 39 33 - Run Length Address
45 81 120 153 - Resultant X Location
5 57 36 39 33 - Incorrect Run Length
Address
5 61 97 136 169 - Resultant X Location

All points following the mark in error are plotted incorrectly. Since the run-count
extends beyond one sweep, this displacement along the X axis (to the right in this
case) is picked up everywhere resulting in a plausible but displaced grid structure.
A parity bit could detect the presence of this error, but even detection of the
error would not help in reconstructing the correct picture. In fact, a single error
necessitates scrubbing the remainder of the zone. If we add line markers to note
the end of each sweep, we can shorten the run-count and limit the error to just one
sweep. But, the extra line marker codes require considerable additional storage;
six bits per word,, 200 words, 10 pictures, = 12,000 bits, exclusive of parity or

sync bits; if parity is added to this coding scheme, we add 11, 000 more bits.

3.5.4.3 Straight-Line Method

In both straight-line methods so far implemented, the basic line segment word
is stored in serial memory and is fed as demanded by the logic into a cycling delay
line. The basic word is a 40-bit sequence containing origin points, slope, and length
information. _

The least important error takes place when the segment length is altered by
an error. The segment will be shortened or extended and no interaction with the
rest of the rest of the picture takes place. If the slope, slope sign, or mode bit is
in error, the resultant line segment will not connect with its subsequent segments

and will yield a more-or-less obvious error.
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If the error occurs in the mesh interval origin of the segment, more complex
errors can develop. A horizontal displacement of the line will result, with the
possibility that the line will try to go off the picture. However, it is in the Y origin
(mesh sweep) address that errors can have major effects. A word is extracted from
the main serial memory after the first seven (most significant) bits of the Y origin
address have been found equal to the Y sweep counter YC. Let us consider the
situation where the ith word having Y origin Ya (i) is in error and instead has origin

Ye (i). Assume the Y sweep counter has value Yc' Consider the two types of errors:
a, Ye(l) < Ya(l)

The address of the ith word has been reduced so that it arrives earlier in the
picture than it should. This error can be detected if Ye(i) < Ya(i - 1). The data for
the line segment would be dumped and the logic would proceed to the next word.

If Ya(i -1) < Ye(i) < Ya(i + 1), then the ith line segment will be plotted in the

wrong place but the picture will progress normally thereafter.
b. Ye(l) >Y_ (i)

This is the more serious error situation. If Ye(i) >Ya(i + 1) or in general,
Ye(i) >Ya(i + N), N =1,2,3—~~—K, then all the line segments between Ya(i -1)
and Ya(i + K + 1) will be missed, with the exception of Yc(i) which will be in the
wrong place. The most severe case (caused by a 1-bit error) would occur if Yl(l)’
the first segment (a = 1) to be introduced on the first sweep (i = 1) had its address
changed to Y,(512) as the result of an error in the most significant bit. Nothing at
all would be plotted until YC = 512. Thereafter, lines appearing of address less
than 512 would be scrubbed. Lines of address greater than 512 would be plotted in

their proper places.

3.5.4.4 Slope-Coordinate Systems

Single-bit errors in the low speed versions (CM-ZLA and CM-ZLB) can produce

disastrous effects in the grid. These systems have 21 bit segment words (sector code,
initial coordinates) interspersed with single bit mark words. If the error occurs

in the mark word, the immediate effect is to offset a2 single line segment by a mesh
interval. This is the only effect in the CM-ZLA system. For CM-ZLB, additional
errors are caused when the offset segment intersects another segment, since the
mark words for the region of intersection will be applied to the wrong segments

producing another mesh interval offset in each line.




A single bit error in the sector code or initial coordinates of a segment pro-
duces catastrophic results since the correct sequence of data withdrawal from the
memory is destroyed.

In the high speed version of the slope-coordinate system CM-2H, the effects
depend strongly on the main memory organization. For efficient storage of the data,
the word length for a segment must be variable and the length of a word included in
the word itself. However, constant word length can be employed in the updata trans-
mission and error detection employed prior to storage. As 2 minimum safeguard,
only those words whose correct length is verified on board would be stored. As-
suming no errors in the main memory, the error susceptibility is then identical to

that of the straight-line system.

3.5.5 Methods of Error Compensation

3,5,5.1 Introduction

In this section coding schemes are presented which permit operation of the
gridding logic in the face of possible bit errors. At the start of each of the following

sections, the axioms applicable to each system are stated.

3.5.5.2 Coordinate Method, CM-1R

a. Run Length Code
Zone and Picture Sync
Word Parity
From standpoints of implementation, the run-length method CM-1 offers advan-
tages over other systems. The principle source of error is not due to receiver
noise and external phenomena will have a far greater effect on the error rate. In
particular, on-board generated transients are the most significant error source.
In this system, a parity bit pot included in memory estimates) can be included with
the basic coordinate run-length code. This parity check would be performed after
withdrawal of the word from memory. Since errors are interdependént, the detec-
tion of an error should call for immediate cessation of gridding. No more points
are plotted until the sweep has advanced to the next of the equal zones. When an

error is detected, the memory is cycled forward until a special Barker code in the
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memory is decoded. These codes are sent in the updata at points following the last

code of a particular sector. A flow diagram of the process is shown in Figure 3-34,

b. Run Length
No Stored Parity
Sweep Sync by False Code

Error Detection by Accumulation

In the above methods, parity checking was performed after the word informa-
tion had been withdrawn from the memory. However, with the addition of an un-
allowable code word to signify the end of a sweep and by adding some active logic,
an alternate scheme for error detection can be devised. Error will be detected by
progressive accumulation of the run-length values which will OK a sweep if all the
points total up to 192, the length of a complete mesh increment scan.

The signal from the ground will constitute a run-length code for each point to
be marked plus some false points. When all the marks for a given line have been
specified and sufficient false points have been sent so that the run length totals 192,
a Barker sync code is transmitted. This code and the false marks are not placed
in memory. The Barker code recognition can trigger a rope memory which places
an unallowable six-bit end-of-sweep code in the memory. The run length mark
positions in the updata which were totaled in the accumulator are held in a 120-bit
(20 marks maximum per sweep) storage register. If the mark addresses do not
total 192, then the mark addresses in the register are scrubbed and only the end-
of-sweep code is put into memory. As an additional check, the run-length addresses
can be parity tagged, but the addition of the false bits and Barker codes add about
40, 000 bits to the updata. The accumulation method is a more positive error detec-

tion than parity.

3.5.5.3 Coordinate Method, CM-1A

Full X Address

Sweep and Picture Sync

Word Parity

The system in which the full X address is stated (8 bits) can be handled in
the same way as the run-length was handled, with the saving grace that the detection
of an error does not necessitate scrubbing the entire picture grid, only the erroneous

mark. Information determining a sweep change consists of an unallowed code. The
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system is synchronized at the start of each picture. The parity bit is stored in
memory so that this method, with parity and sweep code, requires the largest mem-

ory. A block diagram of the CM-1A error detection circuits appears in Figure 3-35,

3.5.5.4 Straight-Line Methods

Parity Check All Words

Picture Sync Only

As outlined previously, the straight-line method requires error checks of a
type similar to those used for the coordinate methods. A parity bit is easily kept
in the word at all times. A parity check can be made after the main core memory
and be included in the basic delay-line loop. Thus an error that could occur during
calculation would be detected. The only practical consequence of an error detec-
tion would be to dump all the information in the delay line, although if it is assumed
that sync cannot be lost, the dumping of the particular word is sufficient. The
testing for parity is to be done only during the retrace period so that the word dump-

ing sequence in use for the case of a line vacancy can be utilized.

3.5.5.5 Slope-Coordinate Method

Since the low speed (CM-2L) method is especially sensitive to single bit-errors,
it is recommended that the updata be sent twice, and that a matching of the two trans-
missions be obtained before data is stored. To minimize the amount of storage re-
quired before error detection takes place, the data can be sent in short bursts, with
each burst repeated twice.

Figure 3-36 shows the general layout of an approach to CM-2L error detection.
Eight bits of data enter the shift register. The next eight bits are gated (by the
output stage of the counter) to the main memory write circuits provided each bit is
identical to its corresponding bit contained in the shift register. Once an error is
detected by the comparator, the memory loading is stopped until the next zone sync.
Thus, no incorrect data is stored. A single bit error in the average will result in
the loss of 1/8 of the picture grid for a four zone picture. '

The same technique can be applied to CM-2H with the exception that only the
segment in which the error occurs need be dropped. Synchronization can be reob-

tained for each new segment or groups of segments. After error detection, the non-

data bits, added to the segment data for constant word length in the updata transmission,
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are discarded as determined by those bits of the word which indicate segment
length. The segment length determines the word length for both memory write 2
read, so that if no bit errors occur in the memory, the variable word length sho

present no problem.

3.6 ELECTRICAL AND PHYSICAL PARAMETERS

3.6.1 Subsystem Parameters

The weight and power goals for the gridding systems were informally spec
to be 5 pounds and 4 watts. The study performed here kept these limitations in
but optimum designs to minimizé a weighted combination of these parameters w
not evolved. Information on the memories whose weights and powers are used i
this section can be found in Appendix C, '""Memory Considerations''. Appendix 1
""Choice of Logic Elements for System Mechanizations", gives information on the
logic elements whose use is assumed here.

In previous sections, the logical methods for performing the required tasl
were outlined. From this information and a consideration of the number of logi
elements required for each function, the following parameters were calculated !
each subsystem, and are shown in Tables 3-8 through 3-12 for the various systs

implementations.

a. Module Count
b. Power: Average per Orbit and Peak

c. Weight
Volume

e. Cost
Reliability

Tables 3-8 through 3-10 show estimates for CM-1 type systems. Table :
assumes the use of core transistor logic (CTL) elements, Table 3-9 integrated
circuit logic elements, and Table 3-10 a combination of the two element types e
used to best advantage. Table 3-11 is an estimate for the straight line (SL-2) «
tem using integrated circuitry. The module estimates of these four tables are

on the designs previously described.
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Table 3-8

CM-1 CTL Logic Implementation

Per Unit Parameter Estimates

Avg.
Module Peak Power/ 3

Unit Power Power Orbit Wt(lbs.) Vol(in™)
Calculation 35 250% 6 .63 14
Sync and Error 60 420 7 1.1 24
Annotation 48 5% 0 .89 20.6
Roll and Pitch 43 10% 0 .76 17.5
FSK Detector,

Demod. 25 250 10 .45 10
Interfaces 30 150% 60 .54 12
Memory, 100 KB 1 100%* 100 3.5 140

TOTALS 242 845 183 7.9 238

Power drains that can occur simultaneously

*% Error detection power drain approximately 20% of total.
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Table 3-9

CM-1 Integrated Logic Implementation

Per Unit Parameter Estimates

Avg.
Module Peak Power/ 3

Unit Power Power Orbit Wt(lbs.) Vol(in™)
Calculation 60 470% 360 .63 14
Sync and Error 58 98 Ok 17 .35 11.6
Annotation 53 600% 35 .29 10
Roll and Pitch 34 - 290% 215 .19 6.3
FSK Detector,

Demod. 25 250 10 .45 10
Interfaces 30 150% 60 .54 12
Memory, 100 KB 1 100 100 3.5 140

TOTALS 261 1510 797 5.95 205

* Power drains that can occur simultaneously

#% Error detection power drain approximately 20% of total.
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Table 3-10

CM-1 Hybrid Logic Implementation

Per Unit Parameter Estimates

Avg.
‘ Module Peak Power/ 3

Unit Power Power Orbit Wt(lbs.) Vol(in™)
Calculation CTL 35 250% 6 .63 14
Sync and Error CTL 17 110%* 2 .31 6.8
Annotation CTL 15 95% 4 .27 6
Roll and Pitch CTL 18 0 0 .33 7.2
FSK Detector,

Demod. 25 250 10 .45 10
Interfaces 40 200% 80 .70 16
Memory, 100 KB 1 100% 100 3.5 140
Sync (Int.) 11 96k 5 .09 2.1
Annotation 6 65% 3 .03 4.5
Roll and Pitch 20 160% 8 .15 3.8

TOTALS 188 788 218 6.46 212

* Power drains that can occur simultaneously

% Error detection power drain approximately 20% of total.
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Table 3-11

SL-2 (CM-2H) Integrated Logic Implementation

Unit

Calculation
Sync and Error
Annotation
Roll and Pitch

FSK Detector,
Demod.

Interfaces
Memory, 25 KB
Delay Line

TOTALS

Per Unit Parameter Estimates

Module
Count
175
58
60
34

25
30
1
1

384

Peak
Power
1600

980

600

290

250
150

75
120

2000
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Avg.
Power/
Orbit

1200

16
38
15

10
60
75
84

1500

Wt(lbs. )

1.3
.35
.31
.19

.45

.54
2.5

.65

6.29

Vol(in3)
43

11.6
11

10
12
100
20

204




Table 3-12

CM-2L Integrated Logic Implementation

Per Unit Parameter Estimates

Avg.
. Module Peak Power/ 3

Unit Count Power Orbit Wt(lbs.) Vol(in™)
Calculation 120 1100 830 .90 30
iync and Error 58 980 16 .35 11,6
\nnotation 60 660 33 .31 11
Roll and Pitch 34 290 15 .19 6.3
"SK Detector,

Demod. 25 250 10 .45 10
nterfaces 30 150 60 . 54 12
demory, 25 KB 1 75 75 2.50 100
~ore Buffer,2 KB 1 200 8 1.10 50

TOTALS 329 2000 1047 6.34 230.9
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For the CM-2 system, an extrapolation of the estimates for CM-1 and SL-2
has been performed. The estimate for CM-2H is assumed to be virtually identical
to that of SL.-2 (Table 3-11). The estimate for CM-2L shown in Table 3-12 is based
on the assumption that the CM-2L calculation logic is approximately 2/3 of that needed
for SL-2.

The tables include information for two possible additions:

a. Numeral annotation.
b. Analog-to-digital conversion in case the roll and pitch errors cannot be

made available to the gridding system in digital form.

Table 3-13 summarizes some of the flight system parameters represented in
Tables 3-8 through 3-12. A 20% across the board increase in module count, weight,
volume, and power over the actual estimates appears in Table 3-13 to offset increases
which often occur in translating paper designs to hardware. An exception is taken
for the memory estimates where it is assumed the vendor has already inserted this
safety factor.

For these extimates it was assumed: 1) that the first flight system is to be
delivered in 1966, 2) that the system would be procured in lots of four. Only those
components now in production or close to production states were considered in the

preliminary design leading to the estimates.

3.6.2 Module Parameters

Logic modules assumed in the system estimates are the Fairchild Milliwatt
Micrologic flat-pack and the DI/AN CTL Pico-Bit as discussed in Appendix D.
Table 3-14 summarizes the per-module parameters of interest.

The values for package.weight and volume of logical modules were obtained
from actual aerospace and microminiature digital equipments built by DI/AN and
others. In the case of CTL Pico-Bit modules, most of the data were obtained on
the larger CTL-LSQ module; but it is felt that a fair scaling of parameters has

been performed,

3.6.3 Reliability of APT On-Board Gridding System

Based on the module count data presented in the previous sections of this report,
and the reliability data contained in Appendix E, "Reliability Estimation, ' one-year

reliability figures and MTBF values have been calculated.
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Table 3-14

Per-Module Parameters

Average Packaged Packa}g3ed Cost, Lots
Item Power(mw) Wt. (lbs.) Vol. (in~) of 1000

913 Flip-Flop 12 0.0057 0.19 $ 18.55
912 Half Adder 8 0.0057 0.19 10. 31
910 Dual Gate 4 0.0057 0.19 7.92
909 Buffer 10 0.0057 0.19 9.07
911 Four Input Gate 4 0.0057 0.19 7.92
CTL-100-24-PB '7x10'8 joules 0.018 0.40 40.00

per "one''shift

Table 3-15 is a summary of results:

Table 3-15
Reliability Estimates

Method MTBF(Hours) Reliability (1 year)
CM-1, CTL 36,300 .78
CM-1, Integrated Ckts. 69, 300 .88
CM-1, Hybrid 50,600 .84
SL-2, Integrated Ckts. 75,900 .89

The supporting data for Table 3-15 is listed in Tables 3-16 through 3-19,
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Table 3-16

CM-1, CTL Reliability Estimate

Module Failure Rate

Total
Failure Rate

MTBF = — - 1 -
" 2.758 x 1072
R=.78
Table 3-17

- Logic Count %/1000 Hours %/1000 Hours
Pico Bit CTL 223 . 007 1.561
Integrated Ckt.

Flat-Packs 67 .001 . 067

Memory (Univac

80, 000 Bits) 1 1.13 1.13
TOTAL CM-1, CTL Failure Rate = 2.758

36,300 Hours

CM-1 Integrated Circuits Reliability Estimate

Module Failure Rate

Total
Failure Rate

Logic Count %/1000 Hours %/1000 Hours
Integrated Ckts., 312 .001 .312
Memory (Univac

80K bit) 1 1.13 1.13

TOTAL CM-1 Integrated Ckt. Failure Rate =1. 442

1

MTBF = -~ = = 69,300 Hours
N

1.442 x 10°5

R =.88
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Table 3-18

CM-1 Hybrid Reliability Estimate

Total
Module Failure Rate Failure Rate
Logic Count %/1000 Hours %/1000 Hours
Pico Bit CTL 103 . . 007 .721
Integrated Ckts. 123 . 001 .123
Memory (Univac
80K bits) 1 1.13 1.13
TOTAL CM-1 Hybrid Failure Rate = 1.974
1 1
MTBF = = = 50,600 Hours
N 1.974 x 107°
R = .84
Table 3-19

SL-2 Integrated Ckt. Reliability Estimate

Total
Module Failure Rate Failure Rate
Logic Count %/1000 Hours %/1000 Hours
Integrated Ckts. 459 .001 . 459
Memory (Univac
40K bits) 1 .86 .86

TOTAL SL-2 Integrated Ckt. Failure Rate=1.319

MTBF = 1 = 1 = 75,900 Hours

1N 1.319x 10'5

R =.89
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SECTION 4

ANALOG APPROACHES TO ON-BOARD GRIDDING

4.1 GENERAL

On-board gridding systems which store the latitude-longitude grid as a series
of continuous lines rather than discrete points are considered to be "analog' systems
in this study. These include systems which project a grid onto the vidicon target
(optical mixing) and systems which employ an electronic or electromechanical scan
of the grid for subsequent electronic video mixing.

In addition to the weight, power, size, etc., limitations which are to be
applied to any type of on-board gridding system, a number of cons traints peculiar
to electromechanical systems for TIROS and Nimbus type spacecraft should be
established. Devices to be used on these spacecraft should not cause changes in
the vehicle angular momentum. This requires that the position changes of mechanical
parts of the system be compensated to avoid changes in the moments of inertia of the
spacecraft. Any '"'stepped' type of mechanical motion should, in general, be avoided.
Rotating devices should possess very small angular moments to avoid interfering with
the spacecraft stabilization systems.

A constraint established for the grid storage medium is the use of a trans-
parent type of storage. This permits the grid to be transferred (for optical mixing
or electronic scanning) through the use of transmitted light and avoids the problems
of background illumination which are inherent in systems employing reflected light.

Another constraint on the design of a gridding system is the unimpaired
operation of the APT systerﬁ in the event of a gridding system failure. This tends
to eliminate devices which insert transparencies in the primary optical train of the
APT system since the loss of ability to move the grid would result in the mixing of
the grid, for the time of failure, into all the subsequent pictures.

Any type of optical mixing which adds light to the pictures to produce grid
lines (e. g., mixing through a half-silvered mirror) suffers from a loss of the
ability to produce easily discernable lines in any part of the APT picture. A "white"
grid line produced by the addition of light would not show up against a background
of bright clouds unless part of the dynamic range of the vidicon is reserved for the
production of whiter -than-white grid lines. Any reduction of the total range for the

cloud picture-data should certainly be avoided.




We might ask what is lost if lines cannot be produced against a bright back-
ground. Generally, the user of the picture-data is interested in the position of the
edges of cloud systems. The white grid lines would still permit edge positions to be
determined although the low contrast between lines and parts of the cloud picture
would make this task more difficult. A more serious limitation is the loss of ability
to introduce annotation at any part of the picture. Grid maps could have fixed latitude-
longitude numerals adjacent to the grid lines only if their appearance in the cloud
pictures could be assured. Thus, optical mixing systems will need separate annota-
tion subsystems.

An arbitrary but useful way of classifying some of the approaches considered
is the shape of the storage medium. The three shapes considered for grid storage
are flat, cylindrical, and spherical. Each of these systems then can be subdivided

into systems employing optical mixing or electronic scanning and mixing.

4,2 GRID STORAGE ON A FLAT MEDIUM

The qualities required of the 'flat'" grid map are macroscopic conformality
and constancy of scale. Patently, no global map can have these features. We can
first consider mapping the global grid into a number of planes. A projection has been
developed by ARACON under an Air Force contract for APT gridding after receipt
of the pictures on the ground.

The grid lines are mapped by projecting the surface of the earth from a point
3 earth radii below a potential principal point onto a plane perpendicular to the earth
radius and located 0. 15 earth radii below the principal point, This projection is not
error free but allows a wide area for picture principal points with minimum error
combined with a minimum number of planes to obtain global coverage.

The scale of the plane projection is determined by the altitude. Means must’
be provided on board the satellite for changing the scale of the projection to
accommodate elliptical orbits or even slight deviations from programmed altitude
for vehicles in circular orbits. Scaling alone is not sufficient to transform the grid
projection for one altitude to that of another. In projecting lines from a round earth
onto a plane, the spatial relationship of the lines in the plane is not linearly related
to the distance between the plane and the sphere. Figure 4-1 shows the relationship
between the location error for a point on a grid line as a function of its earth angle
departure from the subpoint for 50 mile deviations in altitude from programmed

altitudes of 450 and 750 nautical miles. For the program med altitude it is ass umed
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that the grid lines are perfectly mapped on the plane. It can be seen that the error
for most of the grid line data in the picture is small with a very rapid increase of
error toward the picture corners. For minimum or no error, a separate plane
projection would be stored in the satellite for any subpoint which corresponds to a
permitted time of picture taking. Since there is no restriction on picture times, a
single plane must be used for a range of subpoints.

The use of a single plane projection for a range of satellite subpoints implies
that the plane would be continuously moved relative to the projection optics if system
complexity is to be avoided. Figure 4-2 illustrates a grid plane. The satellite sub-
point track is actually a curved line in the plane. A straight line approximation to
the track can be made without encountering serious error only at low altitudes.

The slide must move through the focal plane of the projection system in a direction
parallel to the subpoint track. If the straight line representations of the subpoint
track in the individual frames are aligned parallel to the longitudinal axis of the film
strip, the projected image must be rotated so that the heading line would appear as a
vertical line in the APT picture. The angle between the heading line and the subpoint
track over all the projection planes for a complete orbit would lie in the range of

+ 7° Incorporation of an image rotation feature to accommodate this angle also
provides the ability to remove the effects of satellite yaw.

A system for projecting grids from flat planes is shown schematically in
Figure 4-3. Each film strip contains a series of plane projections. For example,
assume that each plane contains the latitude-longitude grid for an earth area which
is roughly four times the earth coverage of the APT camera. The planes in each
of the two film strips overlap 50%. The film strip from which the grid is projected
at picture time is that strip which contaiﬁs a plane in which the subpoint lies in the
mid-50% of the track in the plane (Fig. 4-4). As the satellite progresses in orbit,
the strips will advance in the film gates and the strip from which the grid is projected
alternates as a function of time.* Each latitude line on the planes of the film strip
corresponds to a specific earth latitude. However, the longitude lines are arbitrary.
For a given orbit the longitude position of the subpoint track in the planes is a
function of the orbit ascending node. This requires that the film be displaced

laterally in the film gate as the film moves through the gate.

* The two series of frames might actually be contained on a single film strip. For

purposes of illustrating the method, they are considered to be on separate strips.
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Since a two axis frame drive is necessary to employ grid frames with '""rubber"
longitude lines, the film can be advanced along a curved subpoint track. This elim-
inates the need for the image rotation feature to obtain the proper heading line
direction since the planes would be oriented with the heading line parallel to the
longitudinal direction of the film strip. However, the elimination of the capability
is attended by a loss of ability to cope with vehicle yaw or errors in orbit inclination.

With the dual optical system illustrated in Figure 4-3, the length of the sub-
point track on each frame (grid plane) of a film strip is 50% of the track length on
the frame. This represents a departure of + 25% of the track length on the frame
away from the projection point. An examination of the APT grids produced by
ARACON showed that the allowable departure from the projection point of the map
for a 1% error in grid line location is about +5° of great circle arc if the camera
field of view (side to side) is limited to 20° of great circle arc. This condition where
the usable subpoint track length (less than 1% error) of the individual grid frame
is 50% of the total track length on the frame, holds for satellite altitudes up to about
600 nautical miles.* For higher altitudes, the usable length of subpoint track is less
than 50% and more than two series of frames (film strips) would be required if the
constant speed system is to be retained. Alternatively, a discontinuous stepped
typed of film advance could be employed for the higher altitudes although this is not
desirable from satellite dynamic considerations. Due to the necessity for a multi-
speed drive to handle the entire height range, no further consideration has been given
to this approach. The control functions described - scaling, image rotation, two-axis
grid plane scan - and the need for a discontinuous drive are generalized parameters
common to systems which project or scan latitude-longitude grids stored in the form
of a plane projection.

Some of the problems listed above can be avoided if the latitude-longitude
grid is mapped in a continuous fashion rather than projected on a series of planes.
One approach to continuous mapping on a flat surface is the projection of the earth
onto a cylindrical surface which is then ''unrolled.' Such a projection, the Oblique
Equidistant Cylindrical projection, was used for early TIROS hand gridding and
backup Nimbus AVCS gridding. The use of the term ''projection' may be somewhat

* This assumes the entire tolerable error is obtained from allowing the picture
principal point to be anywhere on the mid-50% of the subpoint track in the frame.
If we consider that additional errors are present due to lack of perfect registra-
tion, height variations, etc., the maximum altitude for the system is probably

around 500 nautical miles.




misleading since no unique projection point exists for the developed map. The
generating line of the map is a great circle on the earth. Small circles lying in

planes parallel to the great circle on the earth become lines parallel to the map
generating line. This projection is similar in principle to the conventional equi-
distant cylindrical projection. However, the cylinder upon which the map is developed
is skewed with respect to the poles. The projection is defined by the inclination of

the great circle of contact between the cylinder and the earth's sphere.

The use of an OEC map is attractive because the satellite orbit approximates
a great circle, at least in inertial space. The rotation of the earth under the satellite
orbit makes the actual path of the satellite about the earth different from the great
circle. However, for the purposes of mapping, the deviation is not sufficiently great
to invalidate the concept. Figure 4-5 is a section of an OEC map with a sample sub-
point track.

In obtaining a projection which is useful for a wide range of subpoints and
which does not possess discontinuities of the grid lines, we lose the ability to include
the effects of the curvature of the earth. Figure 2-2and2-3 shows the coverage on the
OEC map obtained with the 107° lens (perfect attitude) as a function of satellite height.
The pincushion distortion, apparent in the figure, can be compensated with a lens
possessing the appropriate barrel dis tortion characteristics. This would unfortunately
require a different lens for each altitude at which the satellite may orbit. The range
of altitude which could be accommodated with a single lens, assuming altitude
variation is the principal contributor to error, can be ascertained from the data of
Figure 4-1.

An OEC map of the latitude-longitude grid could be photographed on a con-
tinuous film strip which could be run through the exposure {scanning) station in
synchronism with the progression of the satellite in orbit. The film would be
stretched flat in the exposure gate to keep the portion of the grid to be mixed into
the picture in a single plane. The OEC map would always advance through the film
gate in such a manner as to permit the héading line of the map to be a vertical line
in the APT picture. A translation of the film in a direction perpendicula'r to the
heading line is necessary to keep the subpoint track in the center of the picture.

Since this translation is a function of latitude, the translation can be derived from
the advance of the film coupled through a cam. Picture scaling as a function of
altitude remains the most troublesome of the control functions since scaling calls
for a change in the object-image spatial relationship for systems employing optical

mixing.
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The use of an electronic scan of the OEC map offers several advantages.
Picture scaling can be accomplished by changing the size of the scanning raster,
eliminating the necessity to compensate mechanical motion. Secondly, the detection
of a line in the scanner can be used to electronically generate a black-white mark for
video mixing, permitting all lines or annotation to be visible independent of the picture
background. The film strip could be run directly over the face of the scanner without
an intermediate lens (a fiber optic faceplate on a miniaturized vidicon could well be
employed). The radially symmetric barrel distortion required to compensate the
effects of earth curvature might be obtained through the use of the appropriate mag-
netic lens in the vidicon.

One drawback to the electronic scan of the grid arises from the rather lengthy
time of scan for a single picture. During the 200 s-econd picture scan, the film strip
would move several hundred miles past the subpoint for the time of picture taking.
This necessitates a shrinking of the scanning raster along the direction of the subpoint
track and unfortunately destroys the symmetry of the scan. The situation can be
remedied in one of two ways: first, the film could be stopped after a picture is taken,
remaining stationary during the scanning process. The film would then be rapidly
advanced so that its position is correct for the next picture. This discontinuous type
of motion is undesirable from the viewpoint of satellite dynamics. An alternative is
the electronic generation of the asymmetrical scan. This is rather complicated since
the horizontal and vertical components of the raster must be made a function of de-
parture from the subpoint.

A second disadvantage of the electronic scan is the addition of error which re-
sults from position errors, nonlinearities, and magnetically influenced translations
of the scanning beam. Since similar errors occur in the APT vidicon, very little
of the tolerable 1% error is left for higher order deviations of the grid not corrected

by scaling when compensating for height errors.

4.3 GRID STORAGE ON A CYLINDER

One of the methods of grid storage considered early in the study was the
placement of the grid on a continuously rotating cylinder. The cylinder drive was
to be a synchronous motor driven from the satellite clock through a digital divider
set by ground command to keep the cylinder rotation synchronous with the rotation
of the satellite in orbit. The grid stored on the cylinder was to be in the form of an

Oblique Equidistant Cylindrical projection.




If an OEC projection is stored on a cylinder, a cylindrical lens must be used
to compensate for the cylinder curvature to restore radial symmetry to the projection.
However, it might be more attractive to use the curvature of the cylinder to aid in
obtaining a picture grid which includes the effects of the curvature of the earth. The
cylinder curvature compensates for the earth curvature along the generating line of
the cylindrical projection. (The subpoint track departs a small distance from the
generating line due to earth rotation; see Fig. 4-5.) A correction for the earth
curvature,in a direction perpendicular to the generating line, can be obtained by
bringing the edges of the map on the cylinder closer to the generating line an amount
proportional to the distance between the edge and the generating line. This results
in no error (assuming a linear transfer of cylinder object points to the image plane
of the vidicon) for points along the subpoint track or for points in a line perpendicular
to the track and lying on a line passing through the subpoint. The maximum error
exists for those points which lie on a perpendicular set of lines passing through the
subpoint and rotated 45° from the lines of zero error (the picture diagonals). The
errors encountered as a function of altitude are shown in Figure 4-6. For the 400
nautical mile altitude the errors of a small percentage of the grid points contained in
a circle inscribed in the picture and tangent to the borders barely exceed 1%.
However, the errors grow rapidly with increasing altitude. Since there does not
appear to be any feature of storage of the grid on the cylinder which makes the approach
superior to storage of the grid on a film strip as described in the last section, further

consideration of this approach was dropped.

4.4 GRID STORAGE ON A SPHERE

Probably the most obvious method of presenting the grid to a scanner or lens
is to rotate a sphere bearing inscribed latitude-longitude lines with respect to a
scanner or lens aperture. The sphere is rotated with respect to the aperture in

accordance with the rotation of the earth sphere relative to a "

stationary' satellite.
The most obvious advantage of the grid storage on a sphere is the completely dis-
tortionless grid projection which may be obtained for any altitude provided the grid
is properly scaled as a function of altitude.

One problem is encountered in attempting to use a complete sphere. The
axes around which the sphere must rotate to simulate earth rotation and vehicle
progression in orbit are not perpendicular. If a perpendicular set of axes is to be
used, the rotations must be divided into orthogonal components and a three axis drive

employed. This leads to a very general system which can handle any orbit inclination.
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A digital programming of the drive motor rates allows the compensation of
any orbit errors. The digital correction signals would be transmitted to the satellite
from the CDA station and stored in memory on board the satellite. An orbit would be
segmented in time and each segment would employ an independent set of correction
values.

The sphere could be made approximately 4" in diameter and thus is practical
from the size viewpoint.

Some rather severe problems arise in trying to optically mix the grid lines on
the vidicon focal plane: (1) the extremely wide angular aperture of the lens (1070)
makes any optical mixing scheme quite awkward; (2) optical mixing would entail a
physical modification of the APT camera system.

A more practical mixing approach would involve the use of an electronic scan.
However, the requirement for a 200 second scan of the image introduces the same

problems listed at the end of Section 4. 2 for the scan of the OEC map.

4.5 FEASIBILITY OF ANALOG APPROACHES

The most attractive system appears to be that of Section 4. 4 employing an
electronic scan of the image. However, this system when compared to the digital
systems of Section 3 suffers in several respects. The weight of the system with the
sphere, digital memory, communications channel, 4 axis servo and electronic
scanner is quite likely to exceed the 6.5 - 9 lbs of the digital systems. The power
requirements will also be higher since the servos and some type of illumination draw
power in addition to the digital circuitry needed for a flexible system.

Due to these problems and the difficulties associated with optical coupling
or electronic scanning previously noted, no further consideration is given to the

analog methods.



SECTION 5

GROUND COMPUTATION OF THE PICTURE GRID

5.1 GENERAL

This section treats the problems at the ground complex related to preparing
the compressed data format that will later be expanded in the satellite to form the
grid and annotation. We must distinguish between computer programs and expedients
that will be used for simulation, being fed into the breadboard system, and the even-
tual more sophisticated system that is to be used operationally. In order to cover
these points logically, the first paragraphs of this section will be devoted to the
general mathematics of gridding. Subsequent paragraphs will cover expedients for
simulation, while concluding sections will consider the problems that may be involved

in the use of the CDC 924 computer for operational message preparation.

~

5.2 APPROXIMATION OF GEOGRAPHICAL GRIDS BY STRAIGHT LINES

5.2.1 General Approach

This section describes a method for approximating the projection of a geo-
graphical latitude-longitude grid on a square satellite camera screen by a straight
line grid network. The ground rules considered are that the satellite camera is at
altitudes between 400 and 800 nm., the camera has a 107° field of view on the diagonal
(870 along the sides), and the displacement error of any point on the grid is to be no
greater than one percent of the picture side dimension.

The method considered here consists of the replacement of circular arcs on
the earth of latitude or longitude lines by straight lines in space and projecting these

straight lines onto the camera screen.

5.2.2 Lines of Constant Latitude

Consider first the case of constant latitude lines as indicated in Figure 5-1by
the circular arc ab covering a longitude range yat a latitude ¢ . The best straight-

line fit to this curve in this range of longitude is the line a'b', which lies in the plane



SIDE VIEW

POLAR VIEW

Fig. 5-1 Geometry of Constant Latitude Lines




aOb and which deviates from the curved line ab by not more than the distortion

stance § everywhere, where 6 is given by the equation

(r cos & + 8)cos (W/2) =r cos d - §

1ere r is the radius of the earth, or, in a more convenient form

& =1 cos 6 tan? (b/4) (5.1)

>r example, for an equatorial longitude range of { = 150, the distortion § is only
nm,, and for y= 30° is about 60 nm.

In order to plot the straight line a'b' on a satellite grid it is sufficient to plot
e two points a' and b' on the grid, since a straight line in space projects onto an
idistorted camera screen as a straight line. Plotting of these points is facilitated
' noting that the points a' and b' can be considered to be points on a sphere of slightly
‘eater radius than the earth and located at a slightly lower latitude, or specifically,

e modified sphere properties are related to those of the earth by the equations
r sin ¢ = r' sin ¢' ~
r cos d+ 8 = 1r'cos ¢

1ere primes designate the modified sphere. For small §, these equations reduce to

e form

r!

¢|

r+ 6 cos o
¢ - (8/r) sin ¢

(5.2)

5.2.3 Lines of Constant Longitude

The geometry of lines of constant longitude is identical to that for equatorial
= 0) lines of constant latitude, or in other words, for lines of constant longitude

e above discussion applies with Equations (5.1) and (5. 2) replaced by the equations:

§ =1 tan? (U/4) (5. la)
rtEr oAb (5. 2a)
o' =



5.2.4 Error Analysis

The errors involved in the above straight line approximation procedure may
estimated as follows with respect to the allowable angular error (e) at the camera
one percent of 87° , or 0.0190 radiansT. The angular error involved in approxima
any circular arc on the earth by a straight line may be conveniently estimated by
sidering the angular error as seen at the satellite along the horizontal centerline
the satellite camera screen (for constant latitude lines) or along the vertical cen!
line (for constant longitude lmes) Then, in terms of the linear distortion distanc
the maximum angular error e at the satellite corresponding to any point on the ea
is

e =(8/r))sin 7 (f
where

& 1is the vector error in the straight line approximation

?1 is the vector distance between the satellite and any point on the eai

'+ is the angle between the § and T vectors
1

and where expressions for T and r are derived in Section 5.2.6 below. By combi
Equation (5.1) with Equations (5. 7) through (5.9), the angular error e seen at the
satellite while at latitude ¢s’ for any straight line approximation covering a longi

angle range of |, is given by the expressions

=
—

y=4 tan"! [e sin a/(sin B sin (¢ + B) cos $)]

tan B = sin a/[h/r + 2 sin? (a/2)] (

where
¢  is the satellite latitude
e is the great circle angle on the earth between the satellite and
the latitude line under consideration (same as b - ¢S if the north
south poles are not crossed)
) is the latitude of the line considered
B is the angular distance at the satellite between the satellite vert:

and the latitude line considered

Equation (5.4) is plotted in Figure 5-2 for altitudes of 400, 600 and 800 nm. for
constant latitude lines at the center of the camera screen (¢S =d¢; B, a=0)and £

one of the most distorted lines near the edge of the screen (28 = 87°; ‘bs - a=¢)

% In this analysis, the vertical centerline is assumed to lie approximately in a
meridian plane.

1t The allowable angular error is 1%x 2 tan (3 x 87°) = 0,0190 radians
5-4
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Also shown in Figure 5-2 is the lateral field of view on the camera screen, which is
approximately equal to 2a max/cos ¢ where a is given by Equation (5.5) with 2B, the
lateral camera angle, taken as 87°. It may be noted that for a 400 nm. altitude at
low latitudes the permitted longitude angle interval exceeds the angular field of view,
hence a single straight line approximation is adequate. For most other conditions, a
two segment approximation is adequate.

The expression corresponding to Equation (5.4) for lines of constant longitude
is (note Eq. (4.10)):

1
2

Y=4 tan"! [e sina/(sin B sin (a +B))] (5.4a)

5.2.5 Grid Construction

With the aid of the preceding equations an efficient straight-line latitude longi-
tude grid may be constructed as follows.

Considering first any line of constant latitude (4,), it must first be decided what
is the range of longitude on the satellite screen (AY). Next it must be decided how
many straight line segments are needed to stay within the specified error on the
camera screen. This may be done by solving Equation (5.4) for the maximum allow-
able range of ¢ for any one straig‘ht line segment. Next, having decided the needed
number of lines, the distance 6§ is computed from Equation (5.1) at equally spaced
values of ¢ and modified earth sphere coordinates for the two endpoints of each
straight line segment are computed from Equation (5.2). These endpoints are then
subjected to a standard earth-to-camera-screen transformation to locate them on the
camera screen and may then be connected by straight lines on the camera screen.

For lines of canstant longitude the procedure is the same, except that Equa-

tions (5.1), (5.2), and (5.4) are replaced by Equations (5.1a), (5.2a), and (5. 4a).

5.2.6 Satellite-Earth Geometry

This section presents various satellite-earth geometrical relationships utilized
in the earlier text. Figure 5-3 illustrates a satellite located at the point S atan
altitude h at the latitude ¢s. The satellite camera axis is in the plane of the paper,which is
taken perpendicular to the north-south axis. The line SP of length r,is a ray from

the satellite intersecting the earth at the great circle angle a from the sub-satellite
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point. Also of interest is the angular deviation B of the ray from the satellite verti-
cal and the angle 7 between the ray and a vector & parallel to the equatorial line EE.

The following relationships between these variables may be obtained by inspection of

Figure 5-3.
r sin a =rlsin[3 (5.6)
rsina=[h+r(l-cosa)tan B (5.7)
T=¢_ + B (5.8)

where T is the earth's radius and the +(-) in Equation (5.8) refers to points which
are to the south (north) of the sub-satellite point. The angular distance e, as seen

from the satellite, corresponding to the vector §,is
e =(6/n) sin T
which, after application of Equation (5.6), takes the form
e = (6/r) sin T sin B/sin a (5.9)

If the vector & is taken as vertical (i.e., perpendicular to the surface of the
earth) instead of parallel to an equatorial axis, the above equations remain valid

except that Equation (5.8) is replaced by the expression

T=a+ B (6-vertical) (5.10)

5.3 CALCULATION OF LATITUDE-LONGITUDE ELLIPSES

5.3.1 Introduction

This section presents basic equatiohs and describes several methods for
computing latitude-longitude lines on the image screen of a satellite camera whose
axis points to the center of the earth, the image screen being square and perpendicular
to the camera axis. Sections 5.3.2 and 5.3.3 present equations and coefficients for
computing constant latitude and constant longitude lines, respectively. Section 5.3.4
considers the calculation of intersections of these lines with the edges of the image
screen. Sections 5.3.5 and 5.3.6 consider general and specific applications, respec-
tively, of this information to the processing of these data to a form suitable for

transmission to a satellite.
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5.3.2 Constant Latitude Equations

All constant latitude curves will appear on the image screen as ellipses or

segments of ellipses, the equations of which are (from Appendix A):

x=x. -B {y-y)xNU W -y -y )] (5.11)
Y=Y, -B_ (x-x)iNU_[W_-(x- xc)’] (5.12)
where
X, =-ng sin vy
Ye =+n0 cos Y
Bi= 51n2\(/Ri
Ri—Q+iQ_ cos 2Y (5.13)
=g 2 2
Q 2y 2
T - - 02 sin2 N
U, = (R,R_-Q%sin ?_Y)/Ri
W = 2, 2
Wi-Zan 2 /(R:tU;t)
Ny = tan a4
_1 -
an_zgo(A_l_ A)
a = ¢, [cosz ¢, sin? ('dps - a3) - [(R/r) sin a; - sin ¢, cos (¢s- a3)]z] /
1
[(R/r) sin ¢s - sin ¢, ]2} 2
where (5.14a)
A, =sin (6; £ )/ [R/r £ cos (¢; £ ¢)]
tan a, =%(A++A_)
R=r+h (5.15)
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and
x is the horizontal image screen coordinate

is the vertical image screen coordinate

bg is the satellite latitude

o is the latitude of the curve considered

T is the radius of the earth

h is the satellite altitude

Lo is the distance of the camera screen forward of the focal point
Y is the clockwise angle of the image screen Y-axis from a north-

pointing direction

(See Appendix A for the meaning of intermediate symbols not defined above.)

5.3.3 Constant Longitude Equations

Constant latitude curves are also described by Equations (5.11), (5.12), (5.13)
and (5.15). Equations (5.14a), however, are replaced by the equations (from Appendix
A).

11: = go tan a’:
a?;z%go(A_l_-A*_) * * 4,
aé = go{:(sinz (¢, - a5 ) - [(R/r) sin as]z) /[(R/r) sin ¢ ] ;} 2

(5.14b)
tan ay = 7 (A +A )

o *
Ai=i 51n¢'s/(R/r + cos ¢_ )

*
sin ¢s = cos ¢_ sin (A - )\s)
where
A is the satellite longitude (east)
N is the longitude (east) of the curve considered
and where asterisks aré used above to distinguish quantities for constant longitude

lines from those for constant latitude.




5.3.4 Calculation of Terminal Points of Ellipses

In order to compute practically the latitude-longitude ellipses, it is first nec-
essary to compute the initial and terminal points for each segment of each ellipse
appearing on the image screen, plus all minimum and maximum points on each curve
appearing on the screen. In addition, these points must be ordered in pairs connect-
ing single valued curve segments with the first point of each pair having the smaller
(or larger) value of y. One procedure for accomplishing this is described below.

There are at most eight possible intersections of an elliptical curve with a
square image screen, the coordinates of which may be easily calculated by simul-
taneous solution of the ellipse Equations (5.11) or (5.12) with the four straight line
equations x = + H, y = + H, where H is the half-width of the screen. More speci-

fically the equations for the eight numbered point intersections in Figure 5-4 are

x=x_-B, (Y“Yc)i'\/U+[W+'(Y'YC)Z] (5.16)

y=y.-B_(x-x) iJU_[w_‘- (x - x_)?] (5.17)

where the constants are defined by Equations (5.13). For peoints 8and 1 (5 and 4),
Equation (5.16) applies with the upper sign for point 1 (6) and with y = -H (+H); for
points 2and 3 (7 and 6), Equation (5.17) applies with the upper sign for point 3 (6)
and with x = +H (-H). These eight points will not in general all fall on the image
screen and may not even exist; e. g., points 1 and 8 do not exist for the dashed curve
in Figure 5-4. In the latter case, where there is no intersection of an ellipse with
the line for y = -H (or y = +H) the minimum (maximum) point for each ellipse (design-
ated as 8', 1! in Figure 5-4) must be computed, each such point being considered as
two separate but identical points. The coordinates of these points and the similar
points 4'and 5'are
Vo = Yo "NWL 5ox =x + B NWL
(5.18a)

<
n
<
+
;l.

=x - B NW
oy c + X s c + +




Fig. 5-4 Intersections of Ellipses with Image
Screen Edges
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ailarly, if points 2 and 3 (or 6 and 7) are not on the line x = +H(-H), alternate

nts are calculated from the equations

x :xc+'\)W_ ; y =yC-B_r\/W_

223 213
(5.18b)

X =x -ANW ; y

67 C - 6,7

V. +B_NW_

With the aid of the preceding equations, the pairs of real terminal points of

yments of ellipses may be computed as follows.

1. Compute (x), y,) and (xg, ys) according to the block diagram in Figure 5-5.
e right hand side of this diagram refers to the case where the ellipse intersects
~curve y = -H, and the left hand side to other cases. The parameter En in this
gram is plus if the point falls on the image screen and zero if off the screen. The
‘ameter N, when positive, indicates the first point computed in the sequence 1-8
cluding 1', 2', etc., if computed) which appears on the image screen and at which
ellipse enters the screen, moving counterclockwise around the border of the screen.
+1 (0) indicates the right (left) hand branch of the ellipse.

2. Compute (xz, Yz) and(x3, Ys) according to the block diagram in Figure 5-6.
> symbol Sn designates a computation of the sign of the slope of the ellipse curve

/dx) at the point n (0 if positive and +1 if negative).

3. Compute x,, y, through x4, yp in a similar manner.

4. This process results in a table of the form illustrated below, which may

used as a point of departure for the subsequent discussion.

Table 5-1

Screen Edge Intersection Data

N = My = HEA S
Point (n) | x, |y E |S, |R,
1
2
8
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5. The resulting points may be ordered in pairs in the manner illustrated by the
block diagram in Figure 5-7. This process examines all not already rejected (off
screen) points in the sequence 1-8 (for v >N), discards points beyond the horizon
(T, an tests; see Appendix A for definition of nb), rejects (without further tests) the
second point of a pair if the first point is beyond the horizon (RJ = 1), pairs points for the
two ends of each ellipse segment, and assigns the designations y;, X (yL, xL) to
the larger (smaller) of the values of y, x for a point pair.

The preceding illustrates all steps in the image plane latitude-longitude line
segment end point and pairing calculations except for the case of meridian lines which
are to be terminated in the interior of the image screen at near polar latitudes.

(These terminations may be taken into account by computing the x, y coordinates of
such terminal points and modifying Figure 5-7 accordingly to delete or add line seg-

ment end points as required by the location of the added points.)

5.3. 5‘ General Approach to Generation of Transmitted Data

This section outlines procedures and presents flow diagrams illustrating the
generation of numerical data defining latitude-longitude grid lines through use of the
ellipse equations and screen edge intersection data for these lines. This section is
restricted to considerations of steps common to several methods of data transmission
to the satellite (Methods CM-1A, CM-1R and CM-2L), whereas details of the specific
methods are given in Section 5.3.6.

For all of the methods considered in this section for generating latitude-
longitude grid line data to transmit to a Nimbus satellite, the procedure outlined in
Figure 5-8 is presumed to be followed. That is: (1) the needed ellipse coefficients
are generated for each possible ellipse appearing on the satellite screen, using the
equations of Sections 5.3.2 and 5.3.3; (2) coordinates of all existing intersection
points of these ellipses with the screen edges are evaluated; (3) intersection points
are arranged by pairs describing the two endpoints of each grid line segment appear-
ing on the satellite screen; (4) pairs are arranged sequentially in the order of their
appearance on the satellite screen; and (5) the preceding information is converted to
an appropriate message to be transmitted to the satellite (Sec. 5.3.6). Steps (1)
through (4) are almost identical for the various methods considered here and are
briefly discussed below. Step 5 depends strongly on the particular satellite computer
operation and is discussed in Section 5.3.6 for several of the methods considered in

this study.
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COMPUTE ELLIPSE COEFFICIENTS
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Figure 5-8

General Program for Generating Ellipse
Data to Transmit to a Satellite




Identification and evaluation of ellipse coefficients for all latitude -longitude

line segments appearing on the satellite screen may be accomplished as follows.

1. Determine the satellite subpoint latitude and longitude (dos and A ) and round

these off to the nearest integer values to be plotted ((bso and )\so)‘

2. Calculate the ellipse coefficients for this constant latitude line (Sec. 5.3.2),

and calculate intersections of this ellipse with the screen edges (Sec. 5.3.4).

3. Increase and decrease the initial latitude progressively by the desired
latitude interval between grid lines, repeating step 2, until upper limit and lower

limit constant latitude lines are reached which do not appear on the satellite screen.
4. For meridian lines follow a procedure similar to steps 2 and 3.

5. For each ellipse, pair off points corresponding to the two ends of all ellipse
segments (Sec. 5.3.4), deleting (unseen) segments beyond the horizon and unwanted

near-polar sections of meridian lines.

6. The result of the above process is a table in computer storage more or less
of the form of Table 5-2 (which applies specifically to Methods CM-1A and CM-1R),

with some variations depending on the subsequent desired use of the information. The

Table 5-2

Input Data - Methods CM-1R and CM-1A

Z

':k
Cvu lvn [ ®u =L SR = | v | By | U, | WL | SK | END

WY =

COOCOCOO O
COOOOOCCO

NR

contents of this table consist of NR rows. corresponding to the number of grid lines
appearing an the camera screen. Yu (YL) is the y-coordinate of the upper (lower)

end of the grid line and Xy (xL) is the x~-coordinate of the right (left) hand end of the

grid line. S is an indicator of the grid line slope (0 (1) for dy/dx positive (negative));
R is an indicator of the branch of the ellipse (R =1 (0) for the right (left) hand branch).

sk 1 =
Wt W:h U:l:



The remaining coefficients are ellipse equation coefficients (see Sec. 5.3.2), except
for the columns SK, END, which are peculiar to Methods CM-1R and CM-1A (see Sec.
5.3.6.1).

7. Further processing of the data now depends strongly on the specific form of
the desired message to the satellite and is discussed in Section 5.3.6 for methods
CM-1A, CM-IR and CM-ZLB.

5.3.6 Specific Methods of Generating Transmitted Data

This section presents sample flow diagrams illustrating the computation steps
for translating the ellipse segment data generated as indicated in Section 5.3.5 into
a satellite message for Methods CM-1A, CM-1R and CM-ZLB.

5.3.6.1 Method CM-1A

The satellite message for method CM-lA is of the form
YXXXXXYXX ., ..

where each group of y x x x represents a horizontal line on the television sweep
where y is the screen vertical coordinate (or line marker) and x x x are the values
of the x-coordinate at which grid marks are to be made.

The starting point for generating this message is Table 5-2, whose contents
are described in Section 5.3.5. The data in this table is processed as indicated in

Figure .5-9 (see also Figs. 5-10 and 5-11 and Table 5-3). For each allowable vertical

Table 5-3

Intermediate Data - Methods CM-1A and CM-1R

X 1 2 3 . . . 200
XR 0 1 1 0 1 0 0

* In this table. values of x refer to rounded off integer values of x on a scale

of 200, measured from the left edge of the screen. Equations in the text have values
of x and y referenced to the center of the screen.
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location y on the image screen the computation in Figure 5-9 proceeds as follows. *
Each grid line is first examined to see if the grid line has already ended at a preceding
(larger) value of y (END = 1), to see if the grid line has started yet (AN = 1), and if it
has started, whether it is desired to put a grid mark on this sweep line (SK = 0) or to
skip a line (SK = 1). If the line is nearly horizontal, more than one point may appear
to the right or/and left of the first computed point x; values of x for these points
(designated xd) are supplied by the circuits involving SC and P, where the two values
of S correspond to points left and right of the first-computed point x and P is an in-
direct counter of the number of allowed multiple points.

Each valid computed grid point location (x or xd) is entered into Table 5-3 as a +1
in the XR column at the appropriate value of x. At the conclusion of computations for
each value of y, the information in Table 5-3 is processed as indicated in Figure 5-11,

the accumulation of the output of this circuit being the final message to the satellite.
5.3.6.2 Method CM-~1R

The satellite message for Method CM-1R is of the form
VyYXAXAXYyAXAX...
where each group of y x A x A x represents a horizontal line on the television sweep,
where y is the screen vertical coordinate, x is the x -coordinate for the first grid mark
point on the line and the A x's are the increments in x to reach the next grid mark point.
Generation of this type of message is identical to that described above for Method CM-1A

except for the trivial difference that Figure 5-12 replaces Figure 5-11.

5.3.6.3 Sector Coding Method CM-2Ly

The satellite message for Method CM-2Ly is of the form (ignoring erase in-

formation)
yxSACyxSACym... mxSACym...

(see Section 3.2. 4.3 and Figures 3-23 and 3-24), where y x are the coordinates
of the start of a grid line in a sector designated by the code SAC and the m's
designate line increment distances in the corresponding sector.

In order to generate the information to be transmitted to the satellite for
Method CM-2Lp the following procedure may be as follows. It is assumed here that
(1) the ellipse coefficients have been generated (Sections 5. 3. 2 and 5. 3. 3), (2) that

* The operations indicated in Figure 5-9 assume that the grid line data in Table 5-2
have been arranged in order of first appearance of the lines as seen by the television
sweep.
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intersections with screen edges have been calculated (Sec. 5.3.4) and (3) that inter-
section points have been paired for each grid line, pairs beyond the horizon deleted,
and grid lines placed in order of their encounter by the television sweep (Sec. 5.3. 5}.
These previous steps result in a data table of the form given in Table 5-4 (similar to
Table 5-2), which will be used as the starting point for the following discussion.

Table 5-4 contains the following initial information for each grid line (N,):

Yo %Xg integer coordinates of upper end of grid line
S +1 for initial slope dy/dx negative (0 otherwise)
R +1 (-1) for right (left) hand branch of ellipse

the remaining parameters being defined in Section 5.3.2 or 5.3.3.

This initial data Table 5-4 is to be used as indicated in Figure 5-13. First, the
initial slope of a grid line (dx/dy) is evaluated (see Fig. 5-10). From this slope, it
may be decided from Figure 5-14 which of the eight possible sectors this grid line first
appears in (CT =1 to 8 clockwise from a horizontal eastward direction), and the
required sector coding parameters SAC may be evaluated.

Next, each grid line may be specified by a sequence of numbers of the form
(see Sec.3.2,4.3) yxSACL mymm,. .. mp yXx SACL . . . byfollowing the
computation procedure indicated in Figures 5-15 through 5-17, the results being
entered into Table 5-5. More specifically, this stage of computation consists of
entering the flow diagram of Figure 5-15 at the initial value of CT, proceeding to
calculate L and m,, ... my for all points in the sector in the manner illustrated in
Figure 5-16 for the typical sector where CT = 3 (see also Figs. 5-17 and 5-10). Next,
transfer is made to an adjacent sector as indicated in Figure 5-16 (unless the line
ends), giving the new sector starting data y x SAC, and so on. (Some details of the
block diagram of Fig. 5-16 are indicated in Fig. 5-17).

The end result of this process for all grid lines may conveniently be entered
in a storage table of the form of Table 5-5.

It is next desired to process the information in Table 5-5 (for individual grid
lines) to mix data for different grid lines and to reassemble the data in Table 5-7
according to the requirements of the satellite transmission message for this method.
This process is achieved by first following the block diagram of Figure 5-18% (see
also Fig. 5-19 and Table 5-7), which for each horizontal line on the television camera,
generates the data in Table 5-6, which is, after completion of each screen line cal-
culation, transferred to Table 5-7, which is the final message to the satellite.
(Dashed line arrows in Fig. 5-18 designate transfer of the indicated quantity to the

table indicated at the point of the arrow.)

1 L is the number of points in the corresponding sector for a grid line.
* When reference is made to values of S, A, C and L in this figure, the D% th group of
these quant1t1es appearing in Table 5-5 is meant; values of m correspond to the D' th
" value of m in this table.
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Start with information in Table 5-4

Generate initial slope of segment
(Fig. 5-10)

Determine initial sector numbers:
CT, A, C (Fig. 5-14)

Generate data in Table 5-5 for
each segment (Figs., 5-15 to 5-17)

Mix together and modify where

necessary data for all segments
to obtain form of data to transmit
to satellite (Figs. 5-18 and 5-19)

Figure 5-13

Outline of Computations for Method CM-ZLB
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N :NUMBER OF L VALUES FOR A GRID LI/INE.

D, s COUNTER FOR NUMBER OF L VALIUES .

Doy 2 COUNTER FOR NUMBER OF wm VALUES .
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Ve and x _ are the integer coordinates of a grid point under considera-
tion, which are updated after each new point calculation. X and Y are
the coordinates of the next point for a given grid line. X is initially
calculated exactly and then rounded off to the nearest integer (or trun-

cated). The rounding off process is not indicated in the diagram.
The first V test decides if a line has ended yet (+)

The second V test decides if the point under consideration is one unit
to the right of the last point (0), or to the right (+) or left (-) of this
point.

The V-1test decides if the point under consideration is two units to

the right of the last point (0) or farther to the right (+).

The L tests decide if the point considered is the first point in a

sector (0).

D _, is a counter for the number of points in a grid line, DL is a coun-
ter for the number of sectors traversed by a grid line and NL is the
total number of sectors traversed by a grid line. m is a coefficient

(0 or 1) defining the location of a grid point with respect to the preced-
ing grid point. SAC is a sector code. The Y-distance between adjacent

points in this sector is always two units.

Dashed-line arrows designate transfer of the indicated quantities to
Table 5-5.

Figure 5-17

Comments on CT Circuit
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Table 5-4

Input Data - Method CM-ZLB

1
N, y X XU S R Ve X B+ U+ W'+ B- U_ W_

NR

Note: y, %, are the coordinates of the upper end of each grid line
(Ya z yU); X5 is the x coordinate of the right hand endpoint of each

grid line.
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Table 5-6

Second Intermediate Data Table - Method CM-2L,

*

X MM | MS [m [S |A| C
1 0 0
2 0 0
3 1 1
4 1 0
0 0
1 0
0 0
200 1 0
Table 5-7
Output Data - Method CM—ZLB
y y x § A C y x S A C . . . . . C
1
m m m m m m m
2 &
m m m m
3
m m m m

Note: Data is entered in this table sequentially by rows except for locations

designated by asterisks.




5.4 APPROACHES TO SIMULATION

5.4.1 The Simulation Problem

The first step in the development of the on-board gridding system is to build an
operating breadboard. The breadboard should be a sufficiently close approximation
to space-capable hardware that no fundamental engineering steps remain.

The various methods of gridding presented in this report require a wide variety
of content and format of data to be transmitted from ground to satellite, or in the case
of the breadboard, from a convenient data source. It is not our purpose here to ex-
amine hardware problems of getting data from computer in to breadboard memory,
but rather those of organizing an appropriate data stream.

All techniques other than the analog call for quantities of data that discourage
manual data preparation, although this possibility should be considered if a limited
simulation is sufficient. Use of a computer entails programming, and runaway pro-
gramming can cost considerably more than the breadboard hardware. This dictates
the use of modifications of existing programs where suitable, and the use of FORTRAN
or its equivalents where new programming is required.

While it may be premature to consider the computer to be used for simulation,
the choice seems to be between the CDC 160A and the CDC 924. The CDC 924 has the
advantage of being the computer designated for use in eventual operations, while the
160A has the advantage of greater accessibility (at least to ARACON), a debugged
FORTRAN, a large amount of useful software in the form of gridding modules, and
an ARACON routine that permits exchanging data between FORTRAN and machine
language program sections.,

While the 924 has a more powerful .command structure than the basic 160A,
ARACON uses an internally-developed programming system (ARACOM) for the 160A

which gives it equivalent power at a sacrifice in speed.

5.4.2 Existing Programs

Two gridding programs are readily available to GSFC. One is the ARACON
CDC 160A program, which has been used interchangeably for TIROS and for Nimbus
APT gridding. It is organized in modules, permitting ready modification. The
basic algorithm involves coordinate transformation from selected latitude -longitude
values to the appropriate location on the camera image plane. The program can

cope with camera altitudes beyond synchronous height.

5-36

aEes faass Saae @ SGEaE 2 2SEsh @ BENS SN S fSaEk AaEE e . [ [




The other program is the Nimbus AVCS gridding program for the CDC 924. Its
basic algorithm is the same as that of the TIROS program. Input and output are
adapted to the on-line operation required by the Nimbus system. The reader is |
referred to the individual program documentations for greater detail . ‘
The nature of the basic algorithm of these programs is important, as it restricts i
the degree to which the programs can be profitably altered for preparation of data for ‘
simulation. In the following sections we will examine the degree to which the pro-
gram can be salvaged for simulation for the various digital gridding techniques that

have been studied.

5.4.3 Programming Requirements for Simulation

5.4.3.1 Ellipse Technique |

As seen in Section 5.3, a whole fresh programming start is required. Because
of the on-board complexities, we will not consider the ellipse method further (but

see below.)

5.4.3.2 Straight Line Techniques

The straight line technique calls for a number of straightforward modifications
to the ARACON gridding program:

1. Elimination of attitude prediction and geography sections.

2. Elimination of TIROS wheel provisions.

3. Addition of false earth provisions outlined in Section 5.2, This should be
done anyway in the interest of increased TIROS gridding accuracy.

4, Modification of grid' segment originating logic to conform to requirements
for limiting the number of line segments. The present program originates a new
straight line segment at each latitude-longitude intersection whether it is needed or
not. The most effective way of achieving the desired economy of line segments with
minimum program complication appears to be a tabular approach, so that the geo-
graphic position of all line segment originations is fixed. A more compact approach
is semi-tabular; the breaks would occur atlongitudes determined by the latitude and
longitude of the subpoint.

5. Change of picture boundary from circle to square, This involves intro-

duction of picture azimuth in the picture plane.



6. Output formatting with all required non-data bits added.

7. Output programming to provide a suitable off-line data source for simulation,
We are inclined to retain the present plotter output routine to give a preview of the
grid, thereby facilitating debugging of the overall system and avoiding embarrassment
at demonstrations.

The programming time required to achieve these changes is about three man-
months. It is presumed that the Wallops TIROS computer can be made available for
assembly, debugging, and preparation of simulation material. Actual computer time
of the present program is about eight seconds per grid with a considerably greater
number of coordinate transformations being performed than required for the straight
line method. Plotter output (buffered) takes about 25 seconds. Addition of a paper
or magnetic tape output for subsequent input to the breadboard should take virtually
no time as that output can be achieved on the direct channel during buffered plotter
operation,

Computer running time is dictated by the number of coordinate transformations
to be performed and by the time required for output formatting. It is estimated that
coordinate transforms should take no longer than the time spent by the present TIROS
program (about 7 sec per picture). Output formatting would take perhaps another
second. Outputting would take 2 sec (magnetic tape) to 10 sec (paper tape). Buffered
plotter output would take 25-30 sec during which time all other operations would take
place. Thus, the plotter (if used) becomes the pacing item, giving 2 speed of 30 sec
per grid.

5. 4. 3.3 Coordinate Methods

The coordinate techniques require a different basic algorithm which solves the
problem: along a grid line, where is the next point to be gridded? Since this is not
determined by definition of the latitude-longitude of the point, it cannot be found by .
simple coordinate transformation.

This makes necessary the use of the computational algorithm we have described
as the ellipse method in which the x-coordinate of a point can be obtained once its
y-coordinate is specified. Inspection of Section 5.3 will show that the ellipse method
entails a considerable amount of new programming. While this may be done in
FORTRAN with relative facility, an alternative procedure may be desirable.

By an increase in density of straight line segments, the 160A TIROS program
can be made to approach the computational accuracy of the proper ellipse method. Once
the straight lines are established, it will be readily possible to generate gridding

coordinates following the logic established in Section 5. 3. 5.
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If a coordinate approach be adopted, we recommend a multi-step programming
operation for greatest efficiency:

1. Formatting and output routines plus basic logic to go from straight line
parameters to outputted quantities. This will provide immediate outputs for hardware
debugging if needed.

2. Grafting (1) onto the basic ARACON grid program. This will involve much
the same deletions and additions of the program described for the straight line method.
In addition, data ordering will be required which will probably be most easily achieved
by a separate pass through the computer.

3. Refinement of the segment origination section of the ARACON program to
produce more esthetic and accurate output (a sufficient number of straight line seg-
ments so their junctions are not obvious).

4. Addition of annotation routines.

5a. If the result of (3) is operationally satisfactory, the program can be tidied
up for eventual transcription to 924 language.

5b. If not, preliminary programming analysis of the ellipse algorithm is re-
quired.

Programming modifications for the coordinate methods are estimated to require
five man-months; the additional time is required in special data ordering and formatting.

We see no great difference in requirement between CM1 and CM2.

5.5 OPERATIONAL PROGRAM

Operational programs are to be written for the CDC 924, It would seem reasonable
that the basic 924 monitor programé, functional subroutines, coordinate transformations,
and orbit generation routine can be utilized unless they are too convolved with other
parts of the program. .

In general, substantial modification to existing 924 Nimbus programs would be
required, the amount of modification depending on the particular gridding technique
adopted for the satellite. New programming can be readily based on 160A programming,
as command structure is not dissimilar. The 160-A fixed point arithm tic used by
ARACON uses a 27 bit plus sign word. Only occasional rescaling should be required
to convert to the 23 bit word of the 924.

Since necessarily the amount of computation to be performed for any orbit is
relatively small, there is little reason to strive for extreme operating speed. This
should facilitate programming as it will be possible to take advantage of the large

internal capacity of the 924 for loose, modular coding.
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We estimate that an excellent operational program can be operational in about
nine man-months, building on the base of the simulation program. A part of the
effort will be involved in integrating this program with other programs to permit

operation without upsetting computer routine.




SECTION 6

COMPARISON OF APPROACHES TO ON-BOARD GRIDDING

6.1 INTRODUCTION

Preceding sections have eliminated from consideration the analog approaches.
Of the digital methods, four approaches show sufficient promise to warrant a de-
tailed comparison. These are:

1. straight-line method SL-2

2. coordinate method CM-1

3. coordinate method CM-2L

4. coordinate method CM-2H

The ground computation of the picture grid should not provide a limitation on
any of the three methods although the straight line method is certainly the easiest
to implement. Hence, this factor can be eliminated in comparing the relative per-
formance and feasibility of the three systems.

The differences in the flight-system weights are small and although the
power differences are appreciable, all are small (iess than 2 watts).

The system parameters which are most dependent on the particular approach

are:
1. appearance of the picture grid
2. storage requirements
5. errur suscoptitility

6. 2 APPEARANCE OF THE PICTURE GRID

Two characteristics of the superimposed grid line significantly affect system
design - mark spacing and smoothness of change in slope. With regard to the latter
property, examine the appearance of the grid lines appearing in Figure 6-1
(simulated grid representative of the straight-line method). Although the marks
deviate a maximum of 1% from the true grid line, the large slope changes between
segments are disturbing (in the opinion of the writer). One solution to this problem
is an increase in the number of line segments. The storage requirement for a

single orbit with the SL-2 system is 20,000 bits maximum for grid and annotation



Fig. 6-1

Simulated Grid SL-2
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(assuming the more efficient annotation scheme is employed). However, any reason-
able increase would bring the storage requirement past that of CM-2H, CM-2H has
the additional advantage of a lower logic speed since only one bit is added to Y or X
rather than the 10 bit slope added for SL-2. If the appearance of the lines in Figure
6-1 is judged objectionable (compared to the lines typical of a coordinate system,
shown in Figures 6-2 to 6-10), the choice between SL-2 and CM-2H is certainly the
latter.

With regard to mark spacing, a spacing of eight picture elements provides
a very pleasing well-defined line. However, a larger spacing may be adequate.
Simulated grids representative of any of the coordinate system approaches with a
mesh spacing of two picture elements appear in Figures 6-2 through 6-10. In these
figures, grid lines are simulated with mark spacings of 8 (Fig. 6-2, 6-5, 6-8),
12 (Fig. 6-3, 6-6, 6-9), and 16 (Fig. 6-4, 6-7, 6-10) picture elements. Each grid
is superimposed on three different cloud pictures to provide a firm basis for evalua-
tion of a satisfactory spacing. Although the mark spacing has no effect on the design
of the straight line system, it affects the storage requirement of the coordinate
methods. A decrease in mark spacing from 16 to 8 in the CM-1 approach almost
doubles the size of the memory. For CM-Z2 the corresponding increase in memory

size is approximately 33%.

6.3 SUSCEPTIBILITY TO ERROR

The effects of single-bit errors in the various systems were documented in
Section 3. In Section 3 we also saw that operation of the ‘gridding system in any
configuration is virtually error free if only thermai noisc is vunsidizzd, The mare
important considerations are operation with low S/N ratios when operating near
antenna pattern nulls and the effects of interference from other spacecraft or ground
sources. These factors can only be assessed through experience gained from similar
communications channels now in existence.

If interference is judged to be a very serious problem, the CM-1 approach
having the lowest error susceptibility is probably the best approach and CM-2L

the worst.
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6.4 CONCLUSIONS

Table 6-1 summarizes the storage, weight and power requirements for the
four approaches along with comments on characteristics peculiar to the individual
approach. Although no severe weight penalty results from the large memory require-
ment of CM-1, the ability to do multiple orbits and eventually direct-readout infrared
(DRIR) is impaired. The multi=orbit/function capability makes the SL-2 and CM-2H
approaches attractive. However, the final choice hinges on an assessment of the
grid-appearance requirements and the error probability expected in the updata

communications channel of the satellite.
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Fig. 6-2

Simulated Grid K = 8
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Fig. 6-3

Simulated Grid K =12
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Fig. 6-4

Simulated Grid K
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Fig. 6-5 Simulated Grid K = 8
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Fig. 6-6

Simulated Grid K = 12
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Fig. 6-7 Simulated Grid K = 16




Fig. 6-8

Simulated Grid K =8
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Simulated Grid K =12
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Fig. 6-10

Simulated Grid K =16
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APPENDIX A

ELLIPSE CHARACTERISTICS OF LATITUDE-LONGITUDE LINES

This appendix develops equations for the elliptical characteristics of circular
latitude or longitude curves as seen on the image plareof a satellite camera.
Referring to Figure A-1, the camera axis OT is assumed to pass through the
center of the earth, the image plane being perpendicular to the camera axis.

The n-axis is perpendicular to the camera axis and is a distance (‘;0 forward

of the camera focal point.

A.1 CONSTANT LATITUDE LINES

Consider first the constant latitude circular line QS at the latitude ¢
in Figure A-1, as seen by a satellite at the latitude ¢s . Itis desired to 1
determine the characteristics of the circle QS, as projected on the n, £ image
plane, where the m-axis is a north-south axis and the £-axis is perpendicular

to the plane of Figure A-1. This projection is an ellipse whose upper and lower

edges correspond to the angles a, and o_ in Figure A-1, respectively, which

are given by the expressions:

tan a/_t = (z cos d)s + r cos ¢1 sin ¢s)/(R-z sin ¢>S + rcos ¢1 cos ¢>s) . (A. 1)
where

R=r+h (A. 2)

z = r sin ¢1 (A, 3)

and
r is the radius of the earth
h is the satellite altitude
¢_ is the satellite latitude

s
¢ is the latitude of the curve considered
1

A simpler reduced form of Equation (A. 1) is:

tan a/_t = sin (d>l + ¢s)/ [R/r t+ cos (4>1 + ¢S)] (A. 4)




Fig. A-1 Geometrical Relationships for Constant
Latitude Lines




The center of the projected ellipse is characterized by the line OP,

bisecting the line Q'S, corresponding to the angle as s where

N

tan ay = (tan o + tan @) (A. 5)

+
In the image plane (Figure A-2), the center of the ellipse has the coordinates

(E=0; n= no), where:

n, = &, taneag (A. 6)

and the length of the minor axis of the ellipse (an) is

- 1 .

an = : b (tan @, -tana ) (A.7)
The length of the major axis of the ellipse (ag) may be obtained by con-

sidering the width of the circle QS in Figure A-1 at the location where the plane

OP intersects the circle QS. The following geometrical relationships are

evident:
u = R cos 4>S - (R sin ¢s - r sin ¢1) cot (¢S - a3) (A. 8)
t = (Rsin¢ -1 sin ¢1)/sin (¢s - ) (A.9)
w? = r®cos?¢ -u? (A. 10)
1
tan o, = w/t (A.1])
where

U is the distance EV in tie planc of Tigure Al
w is the width of the circle QS at the location P (perpendicular to the
plane of Figure A-1)
t is the projection of the oblique line OP on the plane of Figure A-1;
this line intersects the circumference of the circle QS at the location P
@y is the inclination angle of the oblique line OP with respect to the
plane of Figure A-1.

The length of the major semi-axis of the ellipse (ag) may now be written as:
agz QO tan o, (A.12)

The preceding equations give the ellipse characteristics (no , an , ag)

of the circle QS as projected on a North-South oriented f£n-axis system in



Fig. A-2 Image Plane Relationships for Constant
Latitude Lines




the image plane (see Fig. A-2), the equation of this ellipse being:

(n-m)al +eag = 1 (A.13)

The normal image XY-coordinates will be related to the En-coordinates by

*
some rotation angle y (Fig. A-2) through the transformation:

ycos Y -xsinY

3
I

(A. 14)

urr
)

xcos Y+ ysinY

Substitution of Equations (A. 14) into (A. 13) gives the following alternate

equations describing the constant latitude ellipses in the XY-image plane:

x = x_ -By-y) t VUIW, -(y - y 1
(A. 15)
Y = ¥ =B (x-x)t VU IW_ - (x-x)]
where
X, = =7, sin Y
Yo = *tmn, cos Y
B‘t = Q_sin ZY/Rt
Rt = Q+t Q_cos 2Y
- .2 2
Qt - a n +_ a &
- 2 32 2
Ut = (R+R_ - Q7 sin ZY)/RJ:
- 2 2
Wt = Zanag/(Rt Uf)
Another point of interest is the value of m at the horizon (nb) for
any ellipse, which is given by the equation:
ny = go(r/h) [(R/r) sin d>1' - sin ¢s]/[(l + R/r) cos ‘¢s] (A. 16)

Also of interest is the slope of the ellipse curve at any point, which is

given by either of the equations:



H
1

s}

+

dx/dy LT Uy -y VUL W, -y -y )R]
(A.17)

"
]
oy
+

dy/dx U (x - xC)/\/U_[W_ - (x - xc)z ]

(3

A.2 MERIDIAN LINES

In order to similarly obtain the ellipse characteristics of a meridian
(constant longitude) line, it is convenient to refer to the two views in Figure A-3.
Consider the meridian line Q which is located at the longitude \ , while the
satellite is in the meridian plane Q' with the longitude )\s . In the left hand
view, the meridian plane of the satellite (Q') is in the plane of the page; in the
right hand view, the meridian line to be drawn (Q) is in the plane of the page;

the two views are rotated with respect to each other about a polar axis by the

angle )\e , where
N o= A -\ (A.18)
e 8
and
N is the (east) longitude of the meridian line considered
)\s is the (east) longitude of the satellite
)\e is the longitude of the meridian line eastward of the satellite

In the right hand view, the satellite is located at a distance R cos ¢s sin )‘e
above the plane of the page, so that the line OT is inclined from the plane

* .
of the page by the angle ¢>s , where
O in )
sin ¢s = cos 4)5 sin (A.19)

It may now be observed that the geometry of the circle Q with respect to the
point 0 in Figure A-3 is the same as the geometry of the circle QS with
respect to the point 0 in Figure A-1, provided that ¢s is replaced by 4;:
and 4)1 set equal to zero. Hence, application of Equations (A. 4) through

(A. 12) gives:
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tan a = % sin d):/(R/r + cos q:.:)
* *
"o = %tan a,
¢ 1 < *
tan ag = 3 (tan @, + tan @) (A. 20)
a: = % §o (tan a: - tan a’f )
; 1
a*g = go ([sinz (¢~: - a/; ) - [(R/r) sin ar:]zl/[(R/r)sin ¢:]z>a

where asterisks are used here to distinguish parameters for meridian lines from
analogous parameters for constant latitude lines.

The above equations give the ellipse characteristics with respect to the
£ n* -axis system in the image plane, where the §* axis is in the plane of the
paper of Figure A-3(b) and the n*-a.xis is perpendicular to this plane. Itis
next desired to relate the g*'q*g*-axis system to the £nl-axis system of Figure
A-3(a), which are rotated with respect to each other about a polar axis by the

angle )‘e . This requires evaluation of the angle v, which is given by:
tan v = tan ¢»B/cos Xe (A.21)

In Figure A-3(b), the three components of a unit vector parallel to the &,*-axis,
as expressed in a conventional X, Y, Z-axis system, are (-sinv , cos v, 0);
in Figure A-2(a) the corresponding components are {-sin v cos X s COS v,
sin v sin )‘e) It follows that the angle B between the ﬁ -axis and the

n-axis (Fig. A-4) is given by the equations

sin B = sin v sin )\e

(A. 22)
cos B = (cos v) cos ¢_ + (sin v cos Ae) sin ¢
or, reducing these equations with the aid of Equation (A. 21),
tan g = sin ¢S tan )‘e (A. 23)

* * K
The angle Y between the £ n -axis system and the conventional XY-image

axis system is then (see Fig. A-4):

* o
Y =90 + g+ Y (A. 24)
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Fig. A-4 Image Plane Coordinate Axes for Meridian
Lines




(Some of the above equations apply only for )‘e < 90°; for other angles add

multiples of + 180° to N, to bring it within this range.)

The final equations of the meridian ellipses in XY image coordinates are
given by the same Equations (A.15) as for constant latitude lines, except that

asterisks are to be applied to all parameters in these equations.

A-10
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APPENDIX B

ANTENNA PROGRAMMING

The on-board gridding system can be used to facilitate antenna programming
at the remote receiving stations. This can be of great importance to military
stations cut off from effective communication with NASA or other sources of
orbital information. While present techniques permit a resourceful and properly
trained individual to construct training programs indefinitely once he has
available basic orbital elements and has succeeded in acquiring one or two passes,
the requisite talents may not be universally available.

Antenna programming can be simplified by placing the sub-point track or an
orbit about 24 hours later on each picture. The track would be marked at 1 or
1/2 minute intervals by grid-type marks. At least one per picture of these
should be identified with the actual minute. At a 1/2 minute interval, about
10 dots would cross the picture. It might be necessary to repeat the dots over
two or three sweeps to make them conspicuous.

Determination of tomorrow's antenna programs would then be achieved by
placing the pictures under an overlay which would be similar to the present gridding
overlay with an azimuth-elevation diagram added. In practice, this would be two
overlays stapled together to properly locate the azimuth-elevation diagram. The
operator need only approximately match latitude-longitude grid lines on picture
and overlay. He can then read off required azimuths ana eievaiivus against WIS,
giving tomorrow's programs directly.

Accuracy is completely adequate for all current and contemplated APT
antennas. Because the overlay height does not correspond exactly to satellite
height, some elevation angle error is possible. It goes to zero in the vicinity
of the station, where it is rﬁost important because of its relation to azimuth slewing.

The addition of this antenna programming feature would vastly simplify

ground operations under field conditions.



APPENDIX C

MEMORY CONSIDERATIONS

C.1 MAIN DATA MEMORIES

C.1l.1 Magnetic Core Storagg_

C.1.1.1 Background

DI/AN Controls has had experience in designing magnetic core memories, and
has here endeavored to supply the basic system principles for the 25, 000 or 80, 000-
bit memories required for the various gridding methods. Each part of the memory
system will be given a short discussion. An estimate of engineering parameters is

given.

C.1.1.2 Operating Modes

The modes necessary for operation of this memory are, (a) repeated serial
write to load the memory at the beginning of the orbit, and (b) repeated serial read
to unload the memory during the orbit. The data are read out of the memory as

required by the calculation logic.

C.1.1.3 Power and Weight Estimates

Guides for estimated power consumption and weight are available from DI/AN's
experience in building sequential access aerospace core memories. The duty cycle
of the memories is so low that the power consumption is essentially equal to the
standby power. Peak power during operation is approximately 8 watts for 10 micro-
seconds, but since the read time for a single word is only a few milliseconds, the

total energy is inconsequential,



Table C-1 DI/AN Core Memory Estimate

Power at
Total Volume  Weight 1KB/sec
Storage  (cu.in.) (lbs.) (mw) Status
30.1 KB 65 2.9 Developmental
Model
30.1 91 3.5 225 Standby* Delivered. No
+538mw/KC effort on power
reduction
4. KB 52 2.5 18 Standby Delivered
+14mw/KC*
25 KB 80 3.0 41 Estimate for
1966
90 KB 140 ‘5.0 120 Estimate for
1966

* Read-Write cycle. Read only or Write only would be half the
value,

C.1l.1.4 Design Details

a. Memory Cores and Wiring - Assuming that single-hole ferrite cores are to

be used for this memory, balance among the required number of turns, drive power,
amount of electronics and system weight and volume leads to the conclusion that

30-mil O, D, cores in a coincident current configuration would be the best to use.

b. Power Gated Sense Amplifier - Because the memory cores produce rela-

tively small output signals, Class A operation of the first stage of the sense amplifier
is generally used. In the low-speed applications, the sense amplifier power buss is
turned on for only a few microseconds during each read cycle. During the time be-
tween read events, the sense amplifier power is turned off, and the standby power of
the sense amplifier is reduced to transistor leakage currents, rather than the normal
Class A operating power,
The bit rate where this procedure becomes economical from a power stand-

point is found by balancing the control circuit power versus the standby power saved

by the switching. The crossover is in the vicinity of 100 kc bit rate.

c. Voltage and Current Regulation - Since the Nimbus power supply of 24,5

volts is regulated to + 2%, little additional voltage regulation is required for proper

core memory operation,
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Conventional cores receiving drive current compensation with varying tempera-
ture generally exhibit a better signal/noise ratio at low power levels than do cores
especially designed for stable characteristics over broad temperature ranges. DI/AN
has built memories with conventional cores operable from -20°C to +900C, and the
specification of temperature required for the APT system (OOC to +600C) presents no
immediate compensation problem. The improved signal/noise ratio allows the use

of fewer sense amplifiers and/or wider margins of reliable operation.

d. Read and Load Operations - This memory is to be used in a purely se-

quential operation; therefore, it is desirable to use four anti-coincident rings for

the X and Y driver positions. Rings of 11 x 12 x 13 x 17 = 28,951 will serve for the
25, 000-bit memory, and of 14 x 17 x 19x 23 = 104, 006 for the 90, 000-bit memory.
In general, the precise number of bits required is less than the product of the four
factors. The beginning of up-data reception can be used to reset the memory drive

rings back to the first address to receive the data for the forthcoming orbit.

C.1.2 Magnetic Thin Film Memories

A number of companies are presently developing various types of thin magnetic
film memories for aerospace use. Specific information on memories was obtained
from the UNIVAC Division of Sperry Rand Corporation. UNIVAC has delivered to
GSFC a laboratory model serial NDRO memory of 98, 304 bits which operates at
100 kc/s. Internal organization yields 16-bit words. This is an engineering model
of a proposed memory later to be in aerospace packaging. The projected size and
weight of the memnryv in aerospace configuration are less than 140 cubic inches and
less than 3.5 lbs. When continuously reading at 100 kc¢/s, the memory consumes a
maximum of 300 milliwatts of power. In addition, a DC/DC converter consumes
130 mw more (72% efficiency) from a 28-volt source, while supplying the 3, 6 and 12
volts required in the memory. Continuous writing at 100 kc/s takes 346 mw. Stand-
by power is 85 mw for the memory, and 80-90 mw for the converter. The projected
aerospace package, as well as the engineering breadboard, utilizes transistor logic.

UNIVAC had supplied us with information as to engineering parameters for
memories expected to be launchable in late 1966,

In Table C-2 are shown characteristics of thin film serial memories already

built by UNIVAC and Texas Instruments.



Table C-2 Present Status of Thin
Film Memories

Total Storage Status
4,096 bits Delivered 1 year ago (TI)
30 KB Flight model for classified
Navy Satellite
98, 304 KB Lab model delivered to

GSFC, 434 MW power

In Table C-3 are shown engineering estimates of memories expected to be

available in 1966. The final two entries are estimates made by UNIVAC at DI/AN's

request.
Table C-3 Engineering Estimates of Thin Film
Memories in 1966
‘ Size Weight Power at

Total Storage {cu.in) (lbs) 1 KB/sec(MW) Status

82 KB 145 3.8 400 Estimate

10 bits/word,

RA
164 KB 300 10 15, 000 Estimate
2.8 MB 624 45 1,500 GSFC contract
just awarded
25 KB 70 2.3 75 $19, 000 each in

quantities of 4.
1966 projection
by UNIVAC at re-
quest of DI/AN.

100 KB 100 3.7 100 $33,000 each in

quantities of 4.

1966 projection

by UNIVAC at re-

quest of DI/AN.
From all indications, it appears that even a memory as large as 100 KB can be
held to limits of 100 cu. in., 4 lbs., and 1/2 watt. It should be pointed out that the
memories operate on a very low duty cycle and that the power estimates made later

in this report are, for all practical purposes, the standby power of the memories.




C.2 ACTIVE COMPUTATIONAL MEMORY

C.2.1 Magnetorestrictive Delay Lines

C.2.1.1 Delay Line Survey

Both the straight line methods operate in sequential modes. For the purposes
of calculation, a delay line is used to store the line segment information applicable to
any particular set of sweeps. An engineering survey of the delay line field showed
that the magnetorestrictive transducer, wire acoustic delay line served our purposes
best.

In connection with the designing of the Nimbus Command System, California
Computer Products and the Computer Control Company developed an aerospace-
rated delay line very similar to that which would be required by method SL-2. (If
this type of line were operated in the NRZ mode, it could also be used on Method
SL-1 at 2 mc/s or higher.) A number of other vendors were contacted for informa-
tion or possible development of a special line. Since CCC has already constructed a
line quite similar to that which would be needed for SL-2, most of the information

available was on a CCC line.

C.2.1.2 SL-2 Requirements

The delay line for use in method SL-2 would have a length of about 2,480
seconds. This time corresponds to the 8 coordinate interval periods between calcula-
tion times. Operating frequency would be at least 430 kc/s. No intermediate taps

are required.

C.2.1.3 Engineering Details

The delay system consists of an acoustic wire delay line driven by a magneto-
restrictive transducer along with driver and receiver electronics. The line can be
excited to propagate a torsional or longitudinal wave. Due to differences in the wave
propagation velocity, the torsional mode line uses about 40% less wire for a given

delay than the longitudinal.



Present state-of-the-art puts the product of Bit Rate x Time Delay at 10, 000,
maximum. In aerospace configuration at 2 mc/s, this would be lowered to about
4,000 and the line loss can be expected to be double (3 db greater) the loss for the
same length in commercial design.

Line Modulation - The lines can be driven in three modulation methods:

a. RZ (Return to Zero): In the RZ mode, a "1" pluse is impressed on the line,

while a '"0" is taken to be the absence of a pulse at strobe time.

b. Bi-Polar: The pulse representing a ''1' and "0'""are of opposite phase and
both are impressed on the line. The output detector is phase sensitive. Detection

of the "0' and '"'1" signals is more reliable than in RZ.

c. NRZ: In Non-Return to Zero, pulses are only impressed when successive
bits change. The information rate possible in NRZ is twice that of the other two
methods, but noise sensitivity increases. It should be noted that new electronic

methods have raised the accuracy of NRZ techniques.

The lines already built by CCC are of length 240 and 660 . sec and each requires
120 mw of power when cycling half-ones. The 240 psec line weighs 0.55 lbs; the 660
usec line weighs slightly more. Special driver circuitry was designed for the Nimbus
clocks and was built integrally with the wire lines by CCC.

The delay need for SL-2 is considerably longer than the Nimbus clock delay;
however, longer lines have been built with aerospace reliability. A delay line built

for the Mariner series probe had the following characteristics:

Length 5 milliseconds, 500-bit storage.
150 milliwatts power consumption when circulating all "1's'"'.

3. In the receiving, clocking, and recycling stages, power consumption aver-
aged 6 mw (6 volts, 1 ma) per stage. The line driver consumed 30 to 40
mw of power. Output amplifiers, a Schmidt trigger and input/output cir- ‘

cuitry consumed the remainder of the power.

The Mariner Mars probe has similar lines on board. On Nimbus, all indica-
tions were that the delay lines operated continuously and without error.

At DI/AN's request, the Computer Control Company estimated physical char-
acteristics of a delay line for method SL-2 considering improvements possible by

late 1966. The rough characteristics which they projected are as follows:
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a. Size: 41/4"x 4 7/8"x 3/4" = 15,5 cu.in.

b. Weight: Approximately 8 oz.

c. Power Consumption: Approximately 100 mw.

d. Reliability Specifications: The same or better than those applicable to the

Nimbus clock.

C.2.2 Solid State Storage Elements

Recent developments in microminiature circuitry has made feasible the storage
of considerable amounts of data in active flip-flop circuits, with many flip-flops on
a single semiconductor chip. The entire circuit is connected as a multiple stage
shift register with data input, data output and shift clock input. General Micro-
electronics, Inc., (GMI) is marketing and has supplied to DI/AN information on
their MOS integrated circuit PL-5000, which is a 20-stage shift register capable of
operating at frequencies up to 1 megacycle with power dissipation less than 60
milliwatts. Although neither this nor any other MOS device is as yet aerospace
rated, the possibilities for small scale scratch pad storage of these devices by 1966
is extremely good, and DI/AN feels that consideration should be given to this device.
The fact that the entire 20-bit shift register fits on a TO5 header, plus the low power
consumption, makes this a most promising device for use in the SL-2 synchronizer,
and in the numeral generator for use with the coordinate method, if numeral genera-
tion on all sweeps is required. (See Section 3.4.1 for numeral generation.) GMI
has indicated to DI/AN that they can construct this element to lengths of less than 20
stacges and have considered giving intermediate point access to shift register stage

outputs. Thus, storage need not be restricted to multiples ot ¢u bits.



APPENDIX D

CHOICE OF LOGIC ELEMENTS FOR SYSTEM MECHANIZATIONS

D.1 GENERAL

One each of two general classes of digital logic elements was chosen for the
detailed implementations of the satellite systems. From these implementations
the resulting system power, weight, volume, cost and reliability were calculated.
The two classes are:

a. Semiconductor integrated circuits.

b. Magnetic logic circuits.

Of the integrated circuits, use of the Fairchild Milliwatt Micrologic (MWuL) in
the '"flat pack'' package was assumed in the system implementations. Of the mag-
netic logic, use of the DI/AN Controls CTL-100-24 core transistor logic (CTL)
element in the "Pico Bit'" package was assumed.

Components now in production or close to production are the only ones con-
sidered here. This has been done because components not now in or close to
production will not have had sufficient debugging time by early 1966 to assure
availability.

The high clock rate (above 400 kc/s for both straight-line methods) requires
that integrated circuits be used for mechanization. The low audio (1-20 kc/s)
clock rates of the coordinate methods can be handled by either integrated circuits
or CTLs. .

D.2 AVAILABLE INTEGRATED CIRCUITS

Among the many integrated circuit families that will be available for use in
this system, four are especially applicable to our needs because of low power con-
sumption. These are:

a, Texas Instruments Series 51.

b. CBS Laboratories Micropower Circuits using high-resistance thin film
resistors. .

c. Two families of complementary multichip (NPN/PNP) circuits being
developed for NASA by General Instruments Corp. and by J. Sturman at NASA

Lewis Research Center.



d. Fairchild Milliwatt Micrologic.

D. 2.1 Texas Instruments Series 51

The speed of the T.I. Series 51 circuits is marginal at the high clock rates
used in the SL methods. In other respects these circuits are satisfactory and they
could be used successfully in the integrated circuit CM mechanizations. However,
the Fairchild Milliwatt is about as good in power consumption. For simplicity in
estimating all system performances, the MWuL is preferred over the Series 51,

being applicable to all systems considered.

D. 2.2 CBS Laboratories Micropower Circuits

Equipment using the CBS Micropower circuits is likely to have serious noise
sensitivity problems because of the very high circuit impedances. In addition,
speed limitations would rule out use in the SL methods. Production availability and

reliability are still relatively unknown.

D. 2.3 Complementary Multichip Circuits

The complementary circuits show great promise for the future but are not yet
far enough advanced to be considered with confidence. The G.I. circuits are de-
signed for specialized data conditioning functions, rather than for general purpose
logic. NASA-GSFC evaluation of these circuits was begun recently. The NASA-Lewis
designs are still in an early stage and performance parameters cannot yet be pre-

dicted with confidence.

D. 2.4 Fairchild Milliwatt Micrologic

The Fairchild Milliwatt Micrologic family was designed for DOD use in
applications requiring moderate speed (1-5 mc/s clock, depending on logical com-
plexity) and moderately low power (2-12 mw per circuit, depending on function).
These circuits have been in production since 1962 and are lower-power versions
of the Fairchild Micrologic family which were first made in 1959. These circuits

will meet the speed requirements of both the SL and CM systems. For purposes
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of estimating system performance, they are a good compromise among the factors
of assured availability and reliability, power, speed, logical functions available,
and applicability to all systems considered here. For these reasons their use is

assumed in the system estimates.

D.3 CORE-TRANSISTOR LOGIC (CTL)

CTL elements have been in production since 1954. They have a long record
of proven electrical design and operating reliability, including satellite applications.
They have the advantage of very low power consumption at low data rates and can
be applied to mechanizations of the low clock rate CM systems. The '"Pico-Bit"
CTL (0. 066 in3, in production since 1963) has been used for the magnetic logic

system mechanizations.



APPENDIX E

RELIABILITY ESTIMATION

E.1 INTRODUCTION

The systems described here each make use of logic elements whose reliability
is quite high. The practical limitation in the reliability figures given is the number
of life test hours actually accumulated. In the case of the integrated circuits con-
sidered here, many modules have been tested for a comparatively short time, while
in the CTL magnetic logic, tests of a lesser number of modules have continued for
more than six years. Since the mathematical reliability parameter is determined
on a module-hours basis, the estimates for the two types of logic form a somewhat

dubious comparison.

E.2 CTL - MAGNETIC LOGIC

E. 2.1 Life Tests

Supervised field and life tests of DI/AN CTL's have produced no failures
attributable to components, circuit design, manufacturing processes or techniques
now in use. Except for defects arising from obsolete techniques, two controlled
life tests on actual operating systems have accumulated over five million module
nouis withcout o f2ilnre Tn addition, a failure of a CTL element has, to the best of
the manufacturer's knowledge, never occurred in a delivered system. In one case,
at least 20 million module hours are estimated to have been logged with no reported
failures. The total supervised CTL module hours, both field test and life test, is
8. 6 million module hours without a known failure. This is equivalent to . 018%/1000
hours at a 80% confidence level.

These data apply to the LSQ version of the CTL. Tests made to date on the
smaller Pico-Bit version, used in estimates for this report, indicate that it is at
least as reliable as the LSQ. The assumed failure rate for the Pico-Bit unit in
1966 is . 007%/1000 hours (MTBF of 14. 3 million hours). This number is calculated
from Minuteman component specifications. Since a great deal more time than this
has actually been accumulated in delivered equipment, the number is felt to be ex-

cessively low. Component degradations which would constitute 'failures' to the



Minuteman specifications do not affect the CTL operation because of the excellence

and non-criticality of the circuit design.

E. 2.2 Radiation Tests

For the higher orbits, the satellite can be expected to receive significant
doses of radiation in the polar regions. Radiation tests on CTL's have been con-

ducted by Edgerton, Germeshausen and Grier, Inc. and the Naval Research

Laboratories.

The experimental dosage levels in these tests are many orders of magnitude
higher than those which would be encountered in passage through even the most
severe solar flares or through the most intense parts of the Van Allen belt.

a. Radiation Tests by EG&G on DI/AN CTL's - DI/AN CTL's have all been

subjected to the following radiation dosage levels:

(1) Exposure to neutrons at energy levels greater than 0.5 Mev for

a dosage of 4. 8 x 1012 per square centimeter.

(2) Exposure to Gamma Radiation of 2.3 x 108 ergs per gram above
P gs per g

1.0 Mev energy level.

In the tests performed after each exposure, there were no noticeable changes

in the characteristics of the units.

b. Radiation Tests by U. S. Naval Research Laboratory - The following is

a breakdown of the dosages and dose-rates to which each shift register was sub-

jected during testing. All tests were run over a Cobalt source (100 curies) which

emits 1 Mev gamma radiation.
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Level Time Dosage

(R per Hour) (Hours) (Roentgens)
3.75 4 15
16.5 4 66
34.8 3 104, 4
68.7 6 412, 2
137.3 3 411.9
384 2 768
859 2 1,718
Total Dosage 3,495.5

The counter was checked after each increase in dosage and continued to per-

form satisfactorily.

E.3 FAIRCHILD INTEGRATED MICROLOGIC

E. 3.1 Introduction

Reliability data for the Fairchild integrated circuits has largely been taken
on the regular Micrologic series which consumes a good deal more power than
the Milliwatt Micrologic presented for the gridding system. However, there is no
reason to believe that the data presently being obtained on the MWuL series should
be any different than for the pL series and we have extrapolated reliability figures

into 1966 based on present data.

E. 3.2 Life Test Data

Fairchild logic is possibly under test by the M. I. T. Instrumentation Lab.oratory
for eventual use in the Apollo guidance computer. In the June 1964 issue of

Electronic Equipment Engineering, a short article reported on life tests in progress

at M. 1. T. In this test 13,000 Fairchild Micrologic elements (assumedly of various
types) are being operated. As of June 1964, 33 million module hours had been
accumulated with no operational failures (one failure occurred in the lot before the

test started). A later published report (Electronic News, 23 November 1964)

indicated that 71 million module hours had been accumulated. These data reveal a

combined failure rate of . 0032%/1000 hours at a 90% confidence level.



As with the CTL module, these data are extrapolated to 1966. At that time,
present indications predict a failure rate of 0. 001%/1000 hours at 90% confidence

level. These data have been used in the calculations of Section 3. 6. 3.

E. 3.3 Radiation Data

The integrated circuits are basically solid state devices and react to radiation
differently depending on their design basis; i. e., bipolar devices, planar epitaxially
constructed devices, field effect transistors.

With regard to the Fairchild circuits, these circuits were exposed to an in-
tegrated dosage of 1015 minutes/cmz, about two orders of magnitude higher than
might be achieved in one year in the center of the Van Allen belt. The Fairchild
circuits continued to operate throughout the test but did show deterioration in the
waveshape. A similar circuit in discrete components showed no deterioration.

The data here is only for neutron flux. Data for gamma radiation are of more con-
cern. The ‘multiplicity of transistors in all integrated circuits causes them to be
more susceptible to gamma radiation than their discrete counterparts. In this vein,
the use of high frequency devices (such as the Fairchild series) is better since the
base region offers a smaller collection area for gammas than in low-frequency

devices.
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Page 3-4, Figure 3-2

Change "APT SWEEP" to "APT SWEEPS. "

Page 3-5, third paragraph, line 12

Change "(m = k for this case)'" to '"(n = K for this case)."

Page 3-5, third paragraph, line 15

Insert the word "maximum' after the word ""elements. "

Page 3-15, item I, line 1

Omit comma after ''40 bits."

Page 3-17, line 1 of the footnote

Change ''adapted' to "adopted.'

Page 3-22, first paragraph

Change ', ..described in Section 3.2.4.2'" to "...described in Section 3.2.4.1"

Page 3-32, item c, line 4

Change "pluses' to ''pulses.'

Page 3-32a, Figure 3-14

Replace this illustration with attached revised illustration.

Page 3-32, item e, line 2

Change '"...made in S solid state...'" to "... made in 8 solid state..."

Page 3-37, second paragraph, line 7

Change '"...is composed to two bits...'" to '...is composed of two bits..."

ARACON GEOPHYSICS COMPANY
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Page 3-40, second paragraph, line 19

The word "vounters' should read '"counters."

Page 3-43, after the first paragraph, insert the following (see attached revision of
Figure 3-22):

""The output of gate 13 sets a flip-flop which inhibits the clock signals, shifting
the contents of registers A and B back to the memory through the 4~ word delay."

Page 3-43, after the second paragraph, insert the following:

"The contents of registers A and B are returned to memory only if AY is non-
zero, which allows the flip flop, inhibiting gate 14, to be reset. For a horizontal
line segment, the line segment data will remain in A and B, permitting the genera-
tion of mark commands, until a non-zero mark word is withdrawn from memory.
After each mark word is withdrawn from the main store following a mark command,
it is added to the segment word coming from the delay line. However these words
will always be zero while a segment word is in the A and B registers due to the organi-
zation of segments into 45° angular bands."

Page 3-44, Figure 3-22

Replace this illustration with attached revised illustration.

Page 3-45

Commentary after Sweep 2 should be interchanged with commentary after
Sweep 3.

Page 3-49, Figure 3-26

Change figure title from "...Cycle 2..." to "...Cycle 1,.."

Page 3-58, second paragraph, line 2

Change '"...the location mark S...'" to "...the mark locations..."

Page 3-62, Figure 3-30

Audio B.M. S

. E .

The equation: N; = m X ~ Audio
E  Audio BW S .

Should read: _No = Data Rate * N Audio

Page 3-66, Section 3.5.3.1, item g, line3

Change "...on which the above interim...'" to "...on which the above condition..."
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Page 3-79, 3-80, 3-81

Change column title '"Module Power" to '""Module Count."

Page 3-79, 3-80, 3-81, 3-82, 3-83

The column title "Peak Power' is expressed in milliwatts.

Page 3-86, Table 3-14, first column

Change "7 x 10—8 joules'' to"7x 10-7 joules,"

Page 3-86, Table 3-15

The MTBF (Hours) and Reliability (1 year) for the SL-2, Integrated Ckts. should
read, respectively, 52,400 and .85

Page 3-88, Table 3-19

Below the item ''Integrated Ckts.' add the item '"Delay Line' and insert in each
respective column for this item the following: 1, .585, .585. Change Total SL-2
Integrated Ckt. Failure Rate from 1.319 to 1.904 . Change MTBF from 75, 900 Hours
to 52, 400 Hours. Change "R = .89" to "R = .85"

Page 5-40 - As the second paragraph of this page, insert the following:

" While no precise estimates of computer running time were made for an
operational program, a rough evaluation of the time required to execute the program
steps described in the previous sections lead us to believe that a maximum running
time per picture would not exceed the time presently required for the 924 computation
of an AVCS picture grid."
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